计算研究取代基对仲胺与CO2反应动力学过程的影响

谢宏彬, 王攀, 陈景文. 计算研究取代基对仲胺与CO2反应动力学过程的影响[J]. 环境化学, 2016, 35(2): 237-245. doi: 10.7524/j.issn.0254-6108.2016.02.2015092303
引用本文: 谢宏彬, 王攀, 陈景文. 计算研究取代基对仲胺与CO2反应动力学过程的影响[J]. 环境化学, 2016, 35(2): 237-245. doi: 10.7524/j.issn.0254-6108.2016.02.2015092303
XIE Hongbin, WANG Pan, CHEN Jingwen. Substituent effects on kinetics process for the reaction of secondary amines with CO2:A computational study[J]. Environmental Chemistry, 2016, 35(2): 237-245. doi: 10.7524/j.issn.0254-6108.2016.02.2015092303
Citation: XIE Hongbin, WANG Pan, CHEN Jingwen. Substituent effects on kinetics process for the reaction of secondary amines with CO2:A computational study[J]. Environmental Chemistry, 2016, 35(2): 237-245. doi: 10.7524/j.issn.0254-6108.2016.02.2015092303

计算研究取代基对仲胺与CO2反应动力学过程的影响

  • 基金项目:

    国家自然科学基金(21207016,21325729),中央高校基本科研经费(DUT12RC(3)07),辽宁省教育厅(L2012021)及长江学者与创新团队发展计划(IRT_13R05)资助.

Substituent effects on kinetics process for the reaction of secondary amines with CO2:A computational study

  • Fund Project: Supported by the National Natural Science Foundation of China(21207016, 21325729), the Fundamental Research Funds for the Central Universities(DUT12RC(3)07), the Liaoning Provincial Education Department(L2012021) and Program for Changjiang Scholars and Innovative Research Team in University(No.IRT_13R05).
  • 摘要: 本文选取取代的二乙醇胺(DEA)为模型化合物,利用量子化学方法研究了5种不同电负性的取代基(-CH3、-NH2、-OH、-OCH3、-F)分别在DEA氮原子的α和β位取代对仲胺与CO2不同反应路径之间的动力学竞争的影响.研究表明,从动力学方面来看,胺与CO2反应生成氨基甲酸盐是最可行的反应通道,其次是生成碳酸氢盐,而生成氨基甲酸难以实现. 3条反应路径的动力学竞争顺序和伯胺是相同的.研究发现,反应能垒Ea除与胺的pKa值相关外,还与胺的分子结构特性相关,比如:分子内氢键的形成会影响Ea.在将来的理想胺溶液的设计过程中,要综合考虑胺的pKa值及胺的微观结构对胺与CO2反应的动力学的影响.
  • 加载中
  • [1] PUXTY G, ROWLAND R, ALLPORT A, et al. Carbon dioxide postcombustion capture:A novel screening study of the carbon dioxide absorption performance of 76 amines[J]. Environmental Science & Technology, 2009, 43(16):6427-6433.
    [2] 黄斌,刘练波,许世森. 二氧化碳的捕获和封存技术进展[J]. 中国电力,2007,(40)3:14-17.

    HUANG B, LIU L B, XU S S. Evolution of CO2 capture and sequestration technology[J]. Electric Power, 2007,(40)3:14-17(in Chinese).

    [3] 肖琨,陈楠,甄飞强,等. 火力发电厂CO2捕捉技术[J]. 锅炉技术,2010,41(1):73-76.

    XIAO K, CHEN N, ZHEN F Q, et al. CO2 capture cechnology for thermal power plant[J]. Boiler Technology, 2010, 41(1):73-76(in Chinese).

    [4] DAI N, SHAH A D, HU L, et al. Measurement of nitrosamine and nitramine formation from NO<i>x reactions with amines during amine-based carbon dioxide capture for postcombustion carbon sequestration[J]. Environmental Science & Technology, 2012, 46(17):9793-9801.
    [5] LIU Y D, ZHANG L Z, WATANASIRI S. Representing vapor-liquid equilibrium for an aqueous MEA-CO2 system using the electrolyte nonrandom-two-liquid model[J]. Industrial & Engineering Chemistry Research, 1999, 38(5):2080-2090.
    [6] NIELSEN C J, HERRMANN H, WELLER C. Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage(CCS)[J]. Chemical Society Reviews, 2012, 41(19):6684-6704.
    [7] DA SILVA E F, BOOTH A M. Emissions from postcombustion co2 capture plants[J]. Environmental Science & Technology, 2013, 47(2):659-660.
    [8] ROCHELLE G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948):1652-1654.
    [9] Barzagli F, Mani F, Peruzzini M. Continuous cycles of CO2 absorption and amine regeneration with aqueous alkanolamines:A comparison of the efficiency between pure and blended DEA, MDEA and AMP solutions by C-13 NMR spectroscopy[J]. Energy & Environmental Science, 2010, 3(6):772-779.
    [10] VEAWAB A, TONTIWACHWUTHIKUL P, CHAKMA A. Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions[J]. Industrial & Engineering Chemistry Research, 1999, 38(10):3917-3924.
    [11] FREGUIA S, ROCHELLE G T. Modeling of CO2 capture by aqueous monoethanolamine[J]. AIChE Journal, 2003, 49(7):1676-1686.
    [12] ABU-ZAHRA M R M, NIEDERER J P M, FERON P H M, et al. CO2 capture from power plants-Part Ⅱ. A parametric study of the economical performance based on mono-ethanolamine[J]. International Journal of Greenhouse Gas Control, 2007, 1(2):135-142.
    [13] ABU-ZAHRA M R M, SCHNEIDERS L H J, NIEDERER J P M, et al. CO2 capture from power plants-Part I. A parametric study of the technical-performance based on monoethanolamine[J]. International Journal of Greenhouse Gas Control, 2007, 1(1):37-46.
    [14] SOOSAIPRAKASAM I R, VEAWAB A. Corrosion and polarization behavior of carbon steel in MEA-based CO2 capture process[J]. International Journal of Greenhouse Gas Control, 2008, 2(4):553-562.
    [15] MCCANN N, MAEDER M, ATTALLA M. Simulation of enthalpy and capacity of CO2 absorption by aqueous amine systems[J]. Industrial & Engineering Chemistry Research, 2008, 47(6):2002-2009.
    [16] PLAZA J M, VAN WAGENER D, ROCHELLE G T. Modeling CO2 capture with aqueous monoethanolamine[J]. International Journal of Greenhouse Gas Control, 2010, 4(2):161-166.
    [17] CONWAY W, WANG X, FERNANDES D, et al. Toward rational design of amine solutions for PCC applications:The kinetics of the reaction of CO2(aq) with cyclic and secondary amines in aqueous solution[J]. Environmental Science & Technology, 2012, 46(13):7422-7429.
    [18] LIU A H, MA R, SONG C, et al. Equimolar CO2 capture by n-substituted amino acid salts and subsequent conversion[J]. Angewandte Chemie-International Edition, 2012, 51(45):11306-11310.
    [19] CONWAY W, WANG X, FERNANDES D, et al. Toward the understanding of chemical absorption processes for post-combustion capture of carbon dioxide:Electronic and steric considerations from the kinetics of reactions of CO2(aq) with sterically hindered amines[J]. Environmental Science & Technology, 2013, 47(2):1163-1169.
    [20] GURKAN B E, DE LA FUENTE J C, MINDRUP E M, et al. Equimolar CO2 absorption by anion-functionalized ionic liquids[J]. Journal of the American Chemical Society, 2010, 132(7):2116-2117.
    [21] VAIDHYANATHAN R, IREMONGER S S, DAWSON K W, et al. An amine-functionalized metal organic framework for preferential CO2 adsorption at low pressures[J]. Chemical Communications, 2009, 35:5230-5232.
    [22] WANG C M, LUO H M, JIANG D E, et al. Carbon dioxide capture by superbase-derived protic ionic liquids[J]. Angewandte Chemie-International Edition, 2010, 49(34):5978-5981.
    [23] WANG C M, MAHURIN S M, LUO H M, et al. Reversible and robust CO2 capture by equimolar task-specific ionic liquid-superbase mixtures[J]. Green Chemistry, 2010, 12(5):870-874.
    [24] HUSSAIN M A, SOUJANYA Y, SASTRY G N. Evaluating the efficacy of amino acids as CO2 capturing agents:a first principles investigation[J]. Environmental Science & Technology, 2011, 45(19):8582-8588.
    [25] SINGH P, NIEDERER J P M, VERSTEEG G F. Structure and activity relationships for amine based CO2 absorbents-I[J]. International Journal of Greenhouse Gas Control, 2007, 1(1):5-10.
    [26] SINGH P, NIEDERER J P, VERSTEEG G F. Structure and activity relationships for amine-based CO2 absorbents-Ⅱ[J]. Chemical Engineering Research and Design, 2009, 87(2):135-144.
    [27] YAMADA H, SHIMIZU S, OKABE H, et al. Prediction of the basicity of aqueous amine solutions and the species distribution in the amine-H2O-CO2 system using the COSMO-RS method[J]. Industrial & Engineering Chemistry Research, 2010, 49(5):2449-2455.
    [28] XIE H B, ZHOU Y, ZHANG Y, et al. Reaction mechanism of monoethanolamine with CO2 in aqueous solution from molecular modeling[J]. Journal of Physical Chemistry A, 2010, 114(43):11844-11852.
    [29] LEE A S, KITCHIN J R. Chemical and molecular descriptors for the reactivity of amines with CO2[J]. Industrial & Engineering Chemistry Research, 2012, 51(42):13609-13618.
    [30] GANGARAPU S, MARCELIS A T M, ZUILHOF H. Improving the capture of CO2 by substituted monoethanolamines:Electronic effects of fluorine and methyl substituents[J]. Chem Phys Chem, 2012, 13(17):3973-3980.
    [31] MINDRUP E M, SCHNEIDER W F. Computational comparison of the reactions of substituted amines with CO2[J]. Chem Sus Chem, 2010, 3(8):931-938.
    [32] XIE H B, JOHNSON J K, PERRY R J, et al. A computational study of the heats of reaction of substituted monoethanolamine with CO2[J]. Journal of Physical Chemistry A, 2011, 115(3):342-350.
    [33] XIE H B, WANG P, HE N, et al. Toward rational design of amines for CO2 capture:Substituent effect on kinetic process for the reaction of monoethanolamine with CO2[J]. Journal of Environmental Sciences, 2015, 37:75-82.
    [34] KIM Y E, LIM J A, JEONG S K, et al. Comparison of carbon dioxide absorption in aqueous MEA, DEA, TEA, and AMP solutions[J]. Bulletin of the Korean Chemical Society, 2013, 34(3):783-787.
    [35] GHIASI M M, MOHAMMADI A H. Rigorous modeling of CO2 equilibrium absorption in MEA, DEA, and TEA aqueous solutions[J]. Journal of Natural Gas Science and Engineering, 2014, 18:39-46.
    [36] GALINDO P, SCHAEFFER A, BRECHTEL K, et al. Experimental research on the performance of CO2-loaded solutions of MEA and DEA at regeneration conditions[J]. Fuel, 2012, 101:2-8.
    [37] MARENICH A V, CRAMER C J, TRUHLAR D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. Journal of Physical Chemistry B, 2009, 113(18):6378-6396.
    [38] XIE H B, HE N, SONG Z, et al. Theoretical investigation on the different reaction mechanisms of aqueous 2-Amino-2-methyl-1-propanol and monoethanolamine with CO2[J]. Industrial & Engineering Chemistry Research, 2014, 53(8):3363-3372.
    [39] ARP H P H, DROGE S T J, ENDO S, et al. More of EPA's SPARC online calculator-The need for high-quality predictions of chemical properties[J]. Environmental Science & Technology, 2010, 44(12):4400-4401.
    [40] LIAO C, NICKLAUS M C. Comparison of nine programs predicting pKa values of pharmaceutical substances[J]. Journal of Chemical Information and Modeling, 2009, 49(12):2801-2812.
    [41] YANG X, XIE H, CHEN J, et al. Anionic phenolic compounds bind stronger with transthyretin than their neutral forms:Nonnegligible mechanisms in virtual screening of endocrine disrupting chemicals[J]. Chemical Research in Toxicology, 2013, 26(9):1340-1347.
  • 加载中
计量
  • 文章访问数:  880
  • HTML全文浏览数:  798
  • PDF下载数:  566
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-09-23
  • 刊出日期:  2016-02-15

计算研究取代基对仲胺与CO2反应动力学过程的影响

  • 1. 工业生态与环境工程教育部重点实验室, 大连理工大学环境学院, 大连, 116024
基金项目:

国家自然科学基金(21207016,21325729),中央高校基本科研经费(DUT12RC(3)07),辽宁省教育厅(L2012021)及长江学者与创新团队发展计划(IRT_13R05)资助.

摘要: 本文选取取代的二乙醇胺(DEA)为模型化合物,利用量子化学方法研究了5种不同电负性的取代基(-CH3、-NH2、-OH、-OCH3、-F)分别在DEA氮原子的α和β位取代对仲胺与CO2不同反应路径之间的动力学竞争的影响.研究表明,从动力学方面来看,胺与CO2反应生成氨基甲酸盐是最可行的反应通道,其次是生成碳酸氢盐,而生成氨基甲酸难以实现. 3条反应路径的动力学竞争顺序和伯胺是相同的.研究发现,反应能垒Ea除与胺的pKa值相关外,还与胺的分子结构特性相关,比如:分子内氢键的形成会影响Ea.在将来的理想胺溶液的设计过程中,要综合考虑胺的pKa值及胺的微观结构对胺与CO2反应的动力学的影响.

English Abstract

参考文献 (41)

目录

/

返回文章
返回