[1] |
PUXTY G, ROWLAND R, ALLPORT A, et al. Carbon dioxide postcombustion capture:A novel screening study of the carbon dioxide absorption performance of 76 amines[J]. Environmental Science & Technology, 2009, 43(16):6427-6433.
|
[2] |
黄斌,刘练波,许世森. 二氧化碳的捕获和封存技术进展[J]. 中国电力,2007,(40)3:14-17.
HUANG B, LIU L B, XU S S. Evolution of CO2 capture and sequestration technology[J]. Electric Power, 2007,(40)3:14-17(in Chinese).
|
[3] |
肖琨,陈楠,甄飞强,等. 火力发电厂CO2捕捉技术[J]. 锅炉技术,2010,41(1):73-76.
XIAO K, CHEN N, ZHEN F Q, et al. CO2 capture cechnology for thermal power plant[J]. Boiler Technology, 2010, 41(1):73-76(in Chinese).
|
[4] |
DAI N, SHAH A D, HU L, et al. Measurement of nitrosamine and nitramine formation from NO<i>x reactions with amines during amine-based carbon dioxide capture for postcombustion carbon sequestration[J]. Environmental Science & Technology, 2012, 46(17):9793-9801.
|
[5] |
LIU Y D, ZHANG L Z, WATANASIRI S. Representing vapor-liquid equilibrium for an aqueous MEA-CO2 system using the electrolyte nonrandom-two-liquid model[J]. Industrial & Engineering Chemistry Research, 1999, 38(5):2080-2090.
|
[6] |
NIELSEN C J, HERRMANN H, WELLER C. Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage(CCS)[J]. Chemical Society Reviews, 2012, 41(19):6684-6704.
|
[7] |
DA SILVA E F, BOOTH A M. Emissions from postcombustion co2 capture plants[J]. Environmental Science & Technology, 2013, 47(2):659-660.
|
[8] |
ROCHELLE G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948):1652-1654.
|
[9] |
Barzagli F, Mani F, Peruzzini M. Continuous cycles of CO2 absorption and amine regeneration with aqueous alkanolamines:A comparison of the efficiency between pure and blended DEA, MDEA and AMP solutions by C-13 NMR spectroscopy[J]. Energy & Environmental Science, 2010, 3(6):772-779.
|
[10] |
VEAWAB A, TONTIWACHWUTHIKUL P, CHAKMA A. Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions[J]. Industrial & Engineering Chemistry Research, 1999, 38(10):3917-3924.
|
[11] |
FREGUIA S, ROCHELLE G T. Modeling of CO2 capture by aqueous monoethanolamine[J]. AIChE Journal, 2003, 49(7):1676-1686.
|
[12] |
ABU-ZAHRA M R M, NIEDERER J P M, FERON P H M, et al. CO2 capture from power plants-Part Ⅱ. A parametric study of the economical performance based on mono-ethanolamine[J]. International Journal of Greenhouse Gas Control, 2007, 1(2):135-142.
|
[13] |
ABU-ZAHRA M R M, SCHNEIDERS L H J, NIEDERER J P M, et al. CO2 capture from power plants-Part I. A parametric study of the technical-performance based on monoethanolamine[J]. International Journal of Greenhouse Gas Control, 2007, 1(1):37-46.
|
[14] |
SOOSAIPRAKASAM I R, VEAWAB A. Corrosion and polarization behavior of carbon steel in MEA-based CO2 capture process[J]. International Journal of Greenhouse Gas Control, 2008, 2(4):553-562.
|
[15] |
MCCANN N, MAEDER M, ATTALLA M. Simulation of enthalpy and capacity of CO2 absorption by aqueous amine systems[J]. Industrial & Engineering Chemistry Research, 2008, 47(6):2002-2009.
|
[16] |
PLAZA J M, VAN WAGENER D, ROCHELLE G T. Modeling CO2 capture with aqueous monoethanolamine[J]. International Journal of Greenhouse Gas Control, 2010, 4(2):161-166.
|
[17] |
CONWAY W, WANG X, FERNANDES D, et al. Toward rational design of amine solutions for PCC applications:The kinetics of the reaction of CO2(aq) with cyclic and secondary amines in aqueous solution[J]. Environmental Science & Technology, 2012, 46(13):7422-7429.
|
[18] |
LIU A H, MA R, SONG C, et al. Equimolar CO2 capture by n-substituted amino acid salts and subsequent conversion[J]. Angewandte Chemie-International Edition, 2012, 51(45):11306-11310.
|
[19] |
CONWAY W, WANG X, FERNANDES D, et al. Toward the understanding of chemical absorption processes for post-combustion capture of carbon dioxide:Electronic and steric considerations from the kinetics of reactions of CO2(aq) with sterically hindered amines[J]. Environmental Science & Technology, 2013, 47(2):1163-1169.
|
[20] |
GURKAN B E, DE LA FUENTE J C, MINDRUP E M, et al. Equimolar CO2 absorption by anion-functionalized ionic liquids[J]. Journal of the American Chemical Society, 2010, 132(7):2116-2117.
|
[21] |
VAIDHYANATHAN R, IREMONGER S S, DAWSON K W, et al. An amine-functionalized metal organic framework for preferential CO2 adsorption at low pressures[J]. Chemical Communications, 2009, 35:5230-5232.
|
[22] |
WANG C M, LUO H M, JIANG D E, et al. Carbon dioxide capture by superbase-derived protic ionic liquids[J]. Angewandte Chemie-International Edition, 2010, 49(34):5978-5981.
|
[23] |
WANG C M, MAHURIN S M, LUO H M, et al. Reversible and robust CO2 capture by equimolar task-specific ionic liquid-superbase mixtures[J]. Green Chemistry, 2010, 12(5):870-874.
|
[24] |
HUSSAIN M A, SOUJANYA Y, SASTRY G N. Evaluating the efficacy of amino acids as CO2 capturing agents:a first principles investigation[J]. Environmental Science & Technology, 2011, 45(19):8582-8588.
|
[25] |
SINGH P, NIEDERER J P M, VERSTEEG G F. Structure and activity relationships for amine based CO2 absorbents-I[J]. International Journal of Greenhouse Gas Control, 2007, 1(1):5-10.
|
[26] |
SINGH P, NIEDERER J P, VERSTEEG G F. Structure and activity relationships for amine-based CO2 absorbents-Ⅱ[J]. Chemical Engineering Research and Design, 2009, 87(2):135-144.
|
[27] |
YAMADA H, SHIMIZU S, OKABE H, et al. Prediction of the basicity of aqueous amine solutions and the species distribution in the amine-H2O-CO2 system using the COSMO-RS method[J]. Industrial & Engineering Chemistry Research, 2010, 49(5):2449-2455.
|
[28] |
XIE H B, ZHOU Y, ZHANG Y, et al. Reaction mechanism of monoethanolamine with CO2 in aqueous solution from molecular modeling[J]. Journal of Physical Chemistry A, 2010, 114(43):11844-11852.
|
[29] |
LEE A S, KITCHIN J R. Chemical and molecular descriptors for the reactivity of amines with CO2[J]. Industrial & Engineering Chemistry Research, 2012, 51(42):13609-13618.
|
[30] |
GANGARAPU S, MARCELIS A T M, ZUILHOF H. Improving the capture of CO2 by substituted monoethanolamines:Electronic effects of fluorine and methyl substituents[J]. Chem Phys Chem, 2012, 13(17):3973-3980.
|
[31] |
MINDRUP E M, SCHNEIDER W F. Computational comparison of the reactions of substituted amines with CO2[J]. Chem Sus Chem, 2010, 3(8):931-938.
|
[32] |
XIE H B, JOHNSON J K, PERRY R J, et al. A computational study of the heats of reaction of substituted monoethanolamine with CO2[J]. Journal of Physical Chemistry A, 2011, 115(3):342-350.
|
[33] |
XIE H B, WANG P, HE N, et al. Toward rational design of amines for CO2 capture:Substituent effect on kinetic process for the reaction of monoethanolamine with CO2[J]. Journal of Environmental Sciences, 2015, 37:75-82.
|
[34] |
KIM Y E, LIM J A, JEONG S K, et al. Comparison of carbon dioxide absorption in aqueous MEA, DEA, TEA, and AMP solutions[J]. Bulletin of the Korean Chemical Society, 2013, 34(3):783-787.
|
[35] |
GHIASI M M, MOHAMMADI A H. Rigorous modeling of CO2 equilibrium absorption in MEA, DEA, and TEA aqueous solutions[J]. Journal of Natural Gas Science and Engineering, 2014, 18:39-46.
|
[36] |
GALINDO P, SCHAEFFER A, BRECHTEL K, et al. Experimental research on the performance of CO2-loaded solutions of MEA and DEA at regeneration conditions[J]. Fuel, 2012, 101:2-8.
|
[37] |
MARENICH A V, CRAMER C J, TRUHLAR D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. Journal of Physical Chemistry B, 2009, 113(18):6378-6396.
|
[38] |
XIE H B, HE N, SONG Z, et al. Theoretical investigation on the different reaction mechanisms of aqueous 2-Amino-2-methyl-1-propanol and monoethanolamine with CO2[J]. Industrial & Engineering Chemistry Research, 2014, 53(8):3363-3372.
|
[39] |
ARP H P H, DROGE S T J, ENDO S, et al. More of EPA's SPARC online calculator-The need for high-quality predictions of chemical properties[J]. Environmental Science & Technology, 2010, 44(12):4400-4401.
|
[40] |
LIAO C, NICKLAUS M C. Comparison of nine programs predicting pKa values of pharmaceutical substances[J]. Journal of Chemical Information and Modeling, 2009, 49(12):2801-2812.
|
[41] |
YANG X, XIE H, CHEN J, et al. Anionic phenolic compounds bind stronger with transthyretin than their neutral forms:Nonnegligible mechanisms in virtual screening of endocrine disrupting chemicals[J]. Chemical Research in Toxicology, 2013, 26(9):1340-1347.
|