开放系统下丙二酸在方解石上的吸附

李振炫, 黄利东, 陈艳芳, 缪晔, 刘大刚, 许正文. 开放系统下丙二酸在方解石上的吸附[J]. 环境化学, 2015, 34(10): 1940-1947. doi: 10.7524/j.issn.0254-6108.2015.10.2015053001
引用本文: 李振炫, 黄利东, 陈艳芳, 缪晔, 刘大刚, 许正文. 开放系统下丙二酸在方解石上的吸附[J]. 环境化学, 2015, 34(10): 1940-1947. doi: 10.7524/j.issn.0254-6108.2015.10.2015053001
LI Zhenxuan, HUANG Lidong, CHEN Yanfang, MIAO Ye, LIU Dagang, XU Zhengwen. Sorption of malonate onto calcite in open-system[J]. Environmental Chemistry, 2015, 34(10): 1940-1947. doi: 10.7524/j.issn.0254-6108.2015.10.2015053001
Citation: LI Zhenxuan, HUANG Lidong, CHEN Yanfang, MIAO Ye, LIU Dagang, XU Zhengwen. Sorption of malonate onto calcite in open-system[J]. Environmental Chemistry, 2015, 34(10): 1940-1947. doi: 10.7524/j.issn.0254-6108.2015.10.2015053001

开放系统下丙二酸在方解石上的吸附

  • 基金项目:

    国家自然科学基金(41303096,41201515)

    教育部留学回国科研启动基金(S131304001)

    南京信息工程大学科研启动基金(S8111032001)

    国家水体污染控制与治理科技重大专项(2015ZX07204-002)资助.

Sorption of malonate onto calcite in open-system

  • Fund Project:
  • 摘要: 通过批量平衡法, 研究开放系统条件下方解石对丙二酸的吸附特性.结果表明, 丙二酸在方解石上的吸附先快后慢, 3 h后渐趋平衡;当pH值从7.7增加到9.7时, 丙二酸的吸附率逐渐降低, HCO3-和CO32-的竞争效应及方解石表面的静电效应是其主导因素;同一初始浓度下, 与开放系统条件比较, 半封闭系统条件下丙二酸的吸附量显著降低, 推测其原因是半封闭系统中OH-的竞争作用.丙二酸与邻苯二甲酸的等温吸附结果对比发现, 丙二酸的吸附能力较邻苯二甲酸更强, 丙二酸的等温吸附过程符合Langmuir模型, 而邻苯二甲酸的等温吸附过程更符合Freundlich模型, 推测以上差异是由两羧基之间的分子结构不同引起的.
  • 加载中
  • [1] Ghatee M H, Koleini M M, Ayatollahi S, et al. Molecular dynamics simulation investigation of hexanoic acid adsorption onto calcite (1014) surface[J]. Fluid Phase Equilibria, 2015, 387:24-31.
    [2] Ukrainczyk M, Stelling J, Vucak M, et al. Influence of etidronic acid and tartaric acid on the growth of different calcite morphologies[J]. Journal of Crystal Growth, 2013, 369:21-31.
    [3] Wada N, Horiuchi N, Nakamura M, et al. Controlled calcite nucleation on polarized calcite single crystal substrates in the presence of polyacrylic acid[J]. Journal of Crystal Growth, 2015, 415:7-14.
    [4] 王晓蓉. 环境化学[M]. 南京:南京大学出版社, 1993, 18-36.
    [5] Chun B J, Lee S G, Choi J I, et al. Adsorption of carboxylate on calcium carbonate (1014) surface: Molecular simulation approach[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 474:9-17.
    [6] 赵彦生, 孙凤儿, 刘永梅, 等. SAS/IPPA/AA三元共聚物对碳酸钙阻垢性能的研究[J]. 环境化学, 2007, 26(1):55-57.
    [7] 徐飞高, 汤剑, 高士祥. 南京市麒麟镇麒麟石刻风化壳的表征[J]. 环境化学, 2008, 27(2):251-255.
    [8] Nagy K L, Cygan, R T, Scotto C S, et al. Use of coupled passivants on calcite mineral surfaces [M]. Pittsburgh:Materials Research Society. 1997, 301-306.
    [9] Oelkers E H, Cole D R. Carbon-dioxide sequestration [J].Elements, 2008, 4:303-307.
    [10] Oelkers E H, Schott J. Geochemical aspects of CO2 sequestration [J]. Chemical Geology, 2005, 217:183-186.
    [11] Ehrlich H, Koutsoukos P G, Demadis K D, et al. Principles of demineralization: modern strategies for the isolation of organic frameworks [J]. Micron, 2009, 40:169-193.
    [12] Martinez R E, Gardes E, Pokrovsky O S, et al. Do photosynthetic bacteria have a protective mechanism against carbonate precipitation at their surface? [J]. Geochimica et Coschimica Acta, 2010, 74:1329-1337
    [13] 王平, 周荣. 高效液相色谱法测定植物根系分泌物中的有机酸[J].色谱, 2006, 24(3):239-242.
    [14] Pokrovsky O S, Golubev S V, Jordan G. Effect of organic and inorganic ligands on calcite and magnesite dissolution rates at 60 ℃ and 30 atm pCO2[J]. Chemical Geology, 2009, 265(1-2):33-43.
    [15] Oelkers E H, Golubev S V, Pokrovsky O S, et al. Do organic ligands affect calcite dissolution rates? [J]. Geochimica et Cosmochimica Acta, 2011, 75(7):1799-1813.
    [16] Mann S, Golubev J M, Sanderson N P, et al. M Morphological influence of functionalized and non-functionalized α, ω -dicarboxylates on calcite crystallization[J]. Journal of the Chemical Society, Faraday Transaction, 1990, 86: 1873-1880.
    [17] Salinas-Nolasco M F, Mendez-Vivar J, Lara V H, et al. Passivation of the calcite surface with malonate ion [J]. Journal of Colloid and Interface Science, 2004, 274(1):16-24.
    [18] Wada N, Yamashitak, Umegaki T. Effects of carboxylic acids on calcite formation in the presence of Mg2+ ions [J]. Journal of Colloid and Interface Science, 1999, 212(1):357-364.
    [19] Geffroy C, Foissy A, Persello J, et al. Surface Complexation of Calcite by Carboxylates in Water[J]. Journal of Colloid and Interface Science, 1999, 211(1):45-53.
    [20] 闫志为, 刘辉利, 张志卫. 温度及CO2对方解石、白云石溶解度影响特征分析[J]. 中国岩溶, 2009, 28(1): 7-10.
    [21] 钱会, 张益谦. 开放系统中CaCO3的溶解与沉淀对溶液的成分及其性质的影响[J]. 中国岩溶, 1995, 14(4): 352-361.
    [22] 钱会, 李雨新. 封闭系统中CaCO3在天然水中溶解或沉淀的水化学后果[J]. 西安工程学院学报, 1994, 16(2): 54-60.
    [23] Van Cappellen P, Charlet L, Stumm W, et al. A surface complexation model of the carbonate mineral-aqueous solution interface [J]. Geochimica et Cosmochimica Acta, 1993, 57(15):3505-3518.
    [24] 李振炫, 黄利东, 陈艳芳, 等. 开放系统下方解石对邻苯二甲酸的吸附[J]. 环境科学, 2015, 36(7): 2547-2553.
    [25] Michard G. Chimie des eaux naturelles [M]. France:Publisud, 2002, 145-180.
    [26] 吴大清, 彭金莲, 刁桂仪, 等. 沉积CaCO3与金属离子界面反应动力学研究[J]. 地球化学, 2000, 29(1):56-61.
    [27] 刘再华, Dreybrodt W, 韩军, 等. CaCO3-H2O-CO2岩溶系统的平衡化学及其分析[J]. 中国岩溶, 2005, 24(1):1-14.
    [28] 黄可可, 黄思静, 佟宏鹏, 等. 成岩过程中碳酸盐-二氧化碳平衡体系的热力学模拟[J]. 岩石学报, 2009, 25(10):2417-2424.
    [29] Lee Y J, Reeder R J. The role of citrate and phthalate during Co(Ⅱ) coprecipitation with calcite [J]. Geochimica et Cosmochimica Acta, 2006, 70(9):2253-2263.
  • 加载中
计量
  • 文章访问数:  1231
  • HTML全文浏览数:  1154
  • PDF下载数:  563
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-05-30
  • 刊出日期:  2015-10-15
李振炫, 黄利东, 陈艳芳, 缪晔, 刘大刚, 许正文. 开放系统下丙二酸在方解石上的吸附[J]. 环境化学, 2015, 34(10): 1940-1947. doi: 10.7524/j.issn.0254-6108.2015.10.2015053001
引用本文: 李振炫, 黄利东, 陈艳芳, 缪晔, 刘大刚, 许正文. 开放系统下丙二酸在方解石上的吸附[J]. 环境化学, 2015, 34(10): 1940-1947. doi: 10.7524/j.issn.0254-6108.2015.10.2015053001
LI Zhenxuan, HUANG Lidong, CHEN Yanfang, MIAO Ye, LIU Dagang, XU Zhengwen. Sorption of malonate onto calcite in open-system[J]. Environmental Chemistry, 2015, 34(10): 1940-1947. doi: 10.7524/j.issn.0254-6108.2015.10.2015053001
Citation: LI Zhenxuan, HUANG Lidong, CHEN Yanfang, MIAO Ye, LIU Dagang, XU Zhengwen. Sorption of malonate onto calcite in open-system[J]. Environmental Chemistry, 2015, 34(10): 1940-1947. doi: 10.7524/j.issn.0254-6108.2015.10.2015053001

开放系统下丙二酸在方解石上的吸附

  • 1.  南京信息工程大学环境科学与工程学院, 南京, 210044;
  • 2.  江苏省大气环境监测与污染控制高技术重点实验室, 南京, 210044;
  • 3.  江苏省大气环境与装备技术协同创新中心, 南京, 210044;
  • 4.  南京信息工程大学应用气象学院, 南京, 210044
基金项目:

国家自然科学基金(41303096,41201515)

教育部留学回国科研启动基金(S131304001)

南京信息工程大学科研启动基金(S8111032001)

国家水体污染控制与治理科技重大专项(2015ZX07204-002)资助.

摘要: 通过批量平衡法, 研究开放系统条件下方解石对丙二酸的吸附特性.结果表明, 丙二酸在方解石上的吸附先快后慢, 3 h后渐趋平衡;当pH值从7.7增加到9.7时, 丙二酸的吸附率逐渐降低, HCO3-和CO32-的竞争效应及方解石表面的静电效应是其主导因素;同一初始浓度下, 与开放系统条件比较, 半封闭系统条件下丙二酸的吸附量显著降低, 推测其原因是半封闭系统中OH-的竞争作用.丙二酸与邻苯二甲酸的等温吸附结果对比发现, 丙二酸的吸附能力较邻苯二甲酸更强, 丙二酸的等温吸附过程符合Langmuir模型, 而邻苯二甲酸的等温吸附过程更符合Freundlich模型, 推测以上差异是由两羧基之间的分子结构不同引起的.

English Abstract

参考文献 (29)

返回顶部

目录

/

返回文章
返回