酚类物质臭氧氧化降解的定量构效关系

杨静, 王建兵, 王亚华, 张峰源, 何绪文. 酚类物质臭氧氧化降解的定量构效关系[J]. 环境化学, 2015, 34(10): 1932-1939. doi: 10.7524/j.issn.0254-6108.2015.10.2015022701
引用本文: 杨静, 王建兵, 王亚华, 张峰源, 何绪文. 酚类物质臭氧氧化降解的定量构效关系[J]. 环境化学, 2015, 34(10): 1932-1939. doi: 10.7524/j.issn.0254-6108.2015.10.2015022701
YANG Jing, WANG Jianbing, WANG Yahua, ZHANG Fengyuan, HE Xuwen. Quantitative structure-activity relationship for the ozonation of phenols[J]. Environmental Chemistry, 2015, 34(10): 1932-1939. doi: 10.7524/j.issn.0254-6108.2015.10.2015022701
Citation: YANG Jing, WANG Jianbing, WANG Yahua, ZHANG Fengyuan, HE Xuwen. Quantitative structure-activity relationship for the ozonation of phenols[J]. Environmental Chemistry, 2015, 34(10): 1932-1939. doi: 10.7524/j.issn.0254-6108.2015.10.2015022701

酚类物质臭氧氧化降解的定量构效关系

  • 基金项目:

    国家自然科学基金(20907072)资助.

Quantitative structure-activity relationship for the ozonation of phenols

  • Fund Project:
  • 摘要: 测定了23种酚的臭氧氧化速率, 分别采用遗传算法(GA)结合偏最小二乘法(PLS)、遗传算法结合人工神经网络(ANN)建立了酚类物质臭氧氧化速率的定量构效关系(QSAR)模型.研究表明, 臭氧氧化酚的速率可用伪一级反应速率模型描述, 苯环上取代基得失电子的能力对酚的氧化速率影响较大.基于GA-PLS算法建立的QSAR模型为lgk=3.439-0.206lgP(辛醇-水分配系数对数值)+0.122×pKa(解离常数)+0.3464χpc(四阶路径/簇分子连接性指数)- 0.0236qC-(碳原子所带最大负电荷).基于GA-ANN算法建立的QSAR模型含有参数lgP、4χpc、pKa和α(平均分子极化率).留一法交叉验证结果表明, 基于GA-ANN算法建立的模型比基于GA-PLS算法建立的模型具有更好的稳健性.QSAR研究表明, 酚的臭氧氧化速率与电子云分布以及苯环上取代基的性质密切相关, 另外, 水的溶剂化作用对酚的氧化速率也有显著影响.
  • 加载中
  • [1] FOCKEDEY E, VAN LIERDE A. Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes[J]. Water Research, 2002, 36(16):4169-4175
    [2] HAN W, ZHU W, ZHANG P, et al. Photocatalytic degradation of phenols in aqueous solution under irradiation of 254 and 185nm UV light[J]. Catalysis Today, 2004, 90(3-4):319-324
    [3] FERNANDO J B, BELTRáN F J. Ozone reaction kinetics for water and wastewater systems[M]. New York: Lewis Publishers, 2004:6-12
    [4] HOIGNé J, BADER H. Rate constants of reactions of ozone with organic and inorganic compounds in water-Ⅱ: Dissociating organic compounds[J]. Water Research, 1983, 17(2):185-194
    [5] HOIGNé J, BADER H. Rate constants of reactions of ozone with organic and inorganic compounds in water-I: Non-dissociating organic compounds[J]. Water Research, 1983, 17(2):173-183
    [6] HU S T, YU Y H. Preozonation of chlorophenolic wastewater for subsequent biological treatment[J]. Ozone Science & Engineering, 1994, 16(1):13-28
    [7] KUO C H, HUANG C H. Aqueous phase ozonation of chlorophenols[J]. Journal of Hazardous Materials, 1995, 41(1):31-45
    [8] SUDHAKARAN S, AMY G L. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification[J]. Water Research, 2013, 47(3):1111-1122
    [9] HUANG J, YU G, YANG X, et al. Predicting physico-chemical properties of polychlorinated diphenyl ethers (PCDEs): Potential organic pollutants (POPs)[J]. Journal of Environmental Science, 2004, 16(2):204-207
    [10] KUšIc' H, RASULEV B, LESZCZYNSKA D, et al. Prediction of rate constants for radical degradation of aromatic pollutants in water matrix: A QSAR study[J]. Chemosphere, 2009, 75(8):128-134
    [11] LEI H, SNYDER S A. 3D QSPR models for the removal of trace organic contaminants by ozone and free chlorine[J]. Water Research, 2007, 41(18):4051-4060
    [12] HU J Y, MORITA, MAGARA Y, et al. Evaluation of reactivity of pesticides with ozone in water using the energies of frontier molecular orbitals[J]. Water Research, 2000, 34(8):2215-2222
    [13] LIU H, TAN J, YU H X, et al. Determination of the apparent reaction rate constants for ozone degradation of substituted phenols and QSPR/QSAR analysis[J]. International Journal of Environmental Research, 2010 4(3):507-512
    [14] LI T, MEI H, CONG P. Combining nonlinear PLS with the numeric genetic algorithm for QSAR[J]. Chemometrics and Intelligent Laboratory Systems, 1999, 45(1/2):177-184
    [15] DAREN Z. QSPR studies of PCBs by the combination of genetic algorithms and PLS analysis[J]. Computers & Chemistry, 2001, 25(2):197-204
    [16] GUPTA V K, KHANI H, AHMADI-ROUDI B, et al. Prediction of capillary gas chromatographic retention times of fatty acid methyl esters in human blood using MLR, PLS and back-propagation artificial neural networks[J]. Talanta, 2001, 83(3):1014-1022
    [17] SAVORY N, ABE K, SODE K, et al. Selection of DNA aptamer against prostate specific antigen using a genetic algorithm and application to sensing[J]. Biosensors & Bioelectronics, 2010, 26(4):1386-1391
    [18] TONG D L, SCHIERZ A C. Hybrid genetic algorithm-neural network: Feature extraction for unpreprocessed microarray data[J]. Artificial Intelligence Review, 2011, 53(1):47-56
    [19] WANG J, ZHOU Y, ZHU W, et al. Catalytic ozonation of dimethyl phthalate and chlorination disinfection by-product precursors over Ru/AC[J]. Journal of Hazardous Materials, 2009, 166(1):502-507
    [20] BADER H, Hoigné J. Determination of ozone in water by the indigo method[J]. Water Research, 1981, 15(4):449-456
    [21] BAHNICK D A, DOUCETTE W J. Use of molecular connectivity indices to estimate soil sorption coefficients for organic chemicals[J]. Chemosphere, 1988, 17(9):1703-1715
    [22] KIER L B, MURRAY W J, Hall L H. Molecular connectivity. 4. Relations to biological activities[J], Journal of Medicinal Chemistry, 1975, 18(12):1272-1274
    [23] NIU J, YU G. Molecular structural characteristics governing biocatalytic chlorination of PAHs by chloroperoxidase from Caldariomyces fumago[J]. SAR and QSAR in Environmental Research, 2004, 15(3):159-167
    [24] NIU J, HUANG L, CHEN J, et al. Quantitative structure-property relationships on photolysis of PCDD/Fs adsorbed to spruce (Picea abies (L) Karst) needle surfaces under sunlight irradiation[J]. Chemosphere, 2005, 58(7):917-924
    [25] YAZDANMEHR M, ANIJDAN S H, BAHRAMI A. Using GA-ANN algorithm to optimize soft magnetic properties of nanocrystalline mechanically alloyed Fe-Si powders[J]. Computational Materials Science, 2009, 44(4):1218-1221
    [26] QIU Y Q, KUO C H, ZAPPI M E. Performance and simulation of ozone absorption and reactions in a stirred-tank reactor[J]. Environmental Science & Technology, 2001, 35(1):209-215
  • 加载中
计量
  • 文章访问数:  1468
  • HTML全文浏览数:  1376
  • PDF下载数:  666
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-02-27
  • 刊出日期:  2015-10-15
杨静, 王建兵, 王亚华, 张峰源, 何绪文. 酚类物质臭氧氧化降解的定量构效关系[J]. 环境化学, 2015, 34(10): 1932-1939. doi: 10.7524/j.issn.0254-6108.2015.10.2015022701
引用本文: 杨静, 王建兵, 王亚华, 张峰源, 何绪文. 酚类物质臭氧氧化降解的定量构效关系[J]. 环境化学, 2015, 34(10): 1932-1939. doi: 10.7524/j.issn.0254-6108.2015.10.2015022701
YANG Jing, WANG Jianbing, WANG Yahua, ZHANG Fengyuan, HE Xuwen. Quantitative structure-activity relationship for the ozonation of phenols[J]. Environmental Chemistry, 2015, 34(10): 1932-1939. doi: 10.7524/j.issn.0254-6108.2015.10.2015022701
Citation: YANG Jing, WANG Jianbing, WANG Yahua, ZHANG Fengyuan, HE Xuwen. Quantitative structure-activity relationship for the ozonation of phenols[J]. Environmental Chemistry, 2015, 34(10): 1932-1939. doi: 10.7524/j.issn.0254-6108.2015.10.2015022701

酚类物质臭氧氧化降解的定量构效关系

  • 1.  国家自然科学基金委, 北京, 100085;
  • 2.  中国矿业大学(北京)化学与环境工程学院, 北京, 100083
基金项目:

国家自然科学基金(20907072)资助.

摘要: 测定了23种酚的臭氧氧化速率, 分别采用遗传算法(GA)结合偏最小二乘法(PLS)、遗传算法结合人工神经网络(ANN)建立了酚类物质臭氧氧化速率的定量构效关系(QSAR)模型.研究表明, 臭氧氧化酚的速率可用伪一级反应速率模型描述, 苯环上取代基得失电子的能力对酚的氧化速率影响较大.基于GA-PLS算法建立的QSAR模型为lgk=3.439-0.206lgP(辛醇-水分配系数对数值)+0.122×pKa(解离常数)+0.3464χpc(四阶路径/簇分子连接性指数)- 0.0236qC-(碳原子所带最大负电荷).基于GA-ANN算法建立的QSAR模型含有参数lgP、4χpc、pKa和α(平均分子极化率).留一法交叉验证结果表明, 基于GA-ANN算法建立的模型比基于GA-PLS算法建立的模型具有更好的稳健性.QSAR研究表明, 酚的臭氧氧化速率与电子云分布以及苯环上取代基的性质密切相关, 另外, 水的溶剂化作用对酚的氧化速率也有显著影响.

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回