有机磷阻燃剂在不同含氧碳纳米管上的吸附行为

严炜, 景传勇. 有机磷阻燃剂在不同含氧碳纳米管上的吸附行为[J]. 环境化学, 2014, 33(10): 1692-1699. doi: 10.7524/j.issn.0254-6108.2014.10.003
引用本文: 严炜, 景传勇. 有机磷阻燃剂在不同含氧碳纳米管上的吸附行为[J]. 环境化学, 2014, 33(10): 1692-1699. doi: 10.7524/j.issn.0254-6108.2014.10.003
YAN Wei, JING Chuanyong. Sorption behavior of organophosphate esters on carbon nanotubes with different surface oxidation[J]. Environmental Chemistry, 2014, 33(10): 1692-1699. doi: 10.7524/j.issn.0254-6108.2014.10.003
Citation: YAN Wei, JING Chuanyong. Sorption behavior of organophosphate esters on carbon nanotubes with different surface oxidation[J]. Environmental Chemistry, 2014, 33(10): 1692-1699. doi: 10.7524/j.issn.0254-6108.2014.10.003

有机磷阻燃剂在不同含氧碳纳米管上的吸附行为

  • 基金项目:

    中国科学院生态环境研究中心青年科学基金项目 (RCEES-QN-20130017F)资助.

Sorption behavior of organophosphate esters on carbon nanotubes with different surface oxidation

  • Fund Project:
  • 摘要: 在对单壁碳纳米管(SWCNT)、多壁碳纳米(MWCNT)及其相应含氧碳管的表征基础上,对OPEs的界面吸附行为进行了考察. 结果表明,碳纳米管对OPEs具有较强的吸附能力(理论最大吸附量可达到412.0 mg·g-1).吸附等温线呈非线性吸附,Freundlich和Langmuir模型均能很好地拟合吸附等温线,校准相关系数分别在0.929—0.999和0.822—0.999范围内.碳纳米管与OPEs间的主要吸附作用机制为疏水相互作用,芳香取代OPEs与碳管管壁间的π-π电子供体受体相互作用对吸附有重要贡献.碳纳米管对OPEs的最大吸附量由碳管比表面积决定,而不受OPEs本身疏水特性的影响.碳管表面氧化引入的含氧基团能通过减弱碳管表面的疏水性和减少表面有效吸附位点来降低碳管对OPEs的吸附容量.
  • 加载中
  • [1] Reemtsma T, Benito Quintana J R, Rodil M, et al. Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate[J].Trac-Trends in Analytical Chemistry, 2008, 27: 727-737
    [2] Quintana J B, Rodil R, Reemtsma T, et al. Organophosphorus flame retardants and plasticizers in water and air Ⅱ. Analytical methodology[J].Trac-Trends in Analytical Chemistry, 2008, 27: 904-915
    [3] van der Veen I, de Boer J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis[J].Chemosphere, 2012, 88: 1119-1153
    [4] Mihajlovic I, Miloradov M V, Fries E. Application of Twisselmann Extraction, SPME, and GC-MS to assess input sources for organophosphate esters into soil[J].Environmental Science & Technology, 2011, 45: 2264-2269
    [5] Wang X., Liu J, Yin Y. Development of an ultra-high-performance liquid chromatography-tandem mass spectrometry method for high throughput determination of organophosphorus flame retardants in environmental water[J].Journal of Chromatography A, 2011, 1218: 6705-6711
    [6] Stapleton H M, Klosterhaus S, Eagle S, et al. Detection of organophosphate flame retardants in furniture foam and us house dust[J].Environmental Science & Technology, 2009, 43: 7490-7495
    [7] Fries E Mihajlovic I. Pollution of soils with organophosphorus flame retardants and plasticizers[J].Journal of Environmental Monitoring, 2011, 13: 2692-2694
    [8] Bollmann U E, Moeler A, Xie Z, et al. Occurrence and fate of organophosphorus flame retardants and plasticizers in coastal and marine surface waters[J].Water Research, 2012, 46: 531-538
    [9] Garcia-LOpez M, Rodriguez I, Cela R, et al. Determination of organophosphate flame retardants and plasticizers in sediment samples using microwave-assisted extraction and gas chromatography with inductively coupled plasma mass spectrometry[J].Talanta, 2009, 79: 824-829
    [10] Qu X, Alvarez P J J, Li Q. Applications of nanotechnology in water and wastewater treatment[J].Water research, 2013, 47: 3931-3946
    [11] Yang K, Xing B. Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application[J].Chemical Reviews, 2010, 110: 5989-6008
    [12] Yang K, Zhu L, Xing B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials[J].Environmental Science & Technology, 2006, 40: 1855-1861
    [13] Wang F, Yao J, Sun K, et al. Adsorption of dialkyl phthalate esters on carbon nanotubes[J].Environmental Science & Technology, 2010, 44: 6985-6991
    [14] Oleszczuk P, Pan B, Xing B. Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes[J].Environmental Science & Technology, 2009, 43: 9167-9173
    [15] Yang K, Xing B. Adsorption of fulvic acid by carbon nanotubes from water[J]. Environmental Pollution,2009, 157: 1095-1100
    [16] Hirsch A. Functionalization of single-walled carbon nanotubes[J].Angewandte Chemie-International Edition, 2002, 41: 1853-1859
    [17] Pan B, Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes[J].Environmental Science & Technology, 2008, 42: 9005-9013
    [18] Lu C Y, Chiu H S. Adsorption of zinc(Ⅱ) from water with purified carbon nanotubes[J].Chemical Engineering Science, 2006, 61: 1138-1145
    [19] Cho H H, Smith B A, Wnuk J D, et al. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes[J].Environmental Science & Technology, 2008, 42: 2899-2905
    [20] David A B, Andrei N K, Noncovalent interactions of molecules with single walled carbon nanotubes[J].Chemical Society Reviews, 2006, 35: 637-659
    [21] Piao L, Liu Q, Li Y. Interaction of amino acids and single-wall carbon nanotubes[J].Journal of Physical Chemistry C, 2012, 116: 1724-1731
  • 加载中
计量
  • 文章访问数:  1734
  • HTML全文浏览数:  1734
  • PDF下载数:  2228
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-05-05
严炜, 景传勇. 有机磷阻燃剂在不同含氧碳纳米管上的吸附行为[J]. 环境化学, 2014, 33(10): 1692-1699. doi: 10.7524/j.issn.0254-6108.2014.10.003
引用本文: 严炜, 景传勇. 有机磷阻燃剂在不同含氧碳纳米管上的吸附行为[J]. 环境化学, 2014, 33(10): 1692-1699. doi: 10.7524/j.issn.0254-6108.2014.10.003
YAN Wei, JING Chuanyong. Sorption behavior of organophosphate esters on carbon nanotubes with different surface oxidation[J]. Environmental Chemistry, 2014, 33(10): 1692-1699. doi: 10.7524/j.issn.0254-6108.2014.10.003
Citation: YAN Wei, JING Chuanyong. Sorption behavior of organophosphate esters on carbon nanotubes with different surface oxidation[J]. Environmental Chemistry, 2014, 33(10): 1692-1699. doi: 10.7524/j.issn.0254-6108.2014.10.003

有机磷阻燃剂在不同含氧碳纳米管上的吸附行为

  • 1. 环境化学与生态毒理学国家重点实验室, 中国科学院生态环境研究中心, 北京, 100085
基金项目:

中国科学院生态环境研究中心青年科学基金项目 (RCEES-QN-20130017F)资助.

摘要: 在对单壁碳纳米管(SWCNT)、多壁碳纳米(MWCNT)及其相应含氧碳管的表征基础上,对OPEs的界面吸附行为进行了考察. 结果表明,碳纳米管对OPEs具有较强的吸附能力(理论最大吸附量可达到412.0 mg·g-1).吸附等温线呈非线性吸附,Freundlich和Langmuir模型均能很好地拟合吸附等温线,校准相关系数分别在0.929—0.999和0.822—0.999范围内.碳纳米管与OPEs间的主要吸附作用机制为疏水相互作用,芳香取代OPEs与碳管管壁间的π-π电子供体受体相互作用对吸附有重要贡献.碳纳米管对OPEs的最大吸附量由碳管比表面积决定,而不受OPEs本身疏水特性的影响.碳管表面氧化引入的含氧基团能通过减弱碳管表面的疏水性和减少表面有效吸附位点来降低碳管对OPEs的吸附容量.

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回