[1] |
Reemtsma T, Benito Quintana J R, Rodil M, et al. Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate[J].Trac-Trends in Analytical Chemistry, 2008, 27: 727-737
|
[2] |
Quintana J B, Rodil R, Reemtsma T, et al. Organophosphorus flame retardants and plasticizers in water and air Ⅱ. Analytical methodology[J].Trac-Trends in Analytical Chemistry, 2008, 27: 904-915
|
[3] |
van der Veen I, de Boer J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis[J].Chemosphere, 2012, 88: 1119-1153
|
[4] |
Mihajlovic I, Miloradov M V, Fries E. Application of Twisselmann Extraction, SPME, and GC-MS to assess input sources for organophosphate esters into soil[J].Environmental Science & Technology, 2011, 45: 2264-2269
|
[5] |
Wang X., Liu J, Yin Y. Development of an ultra-high-performance liquid chromatography-tandem mass spectrometry method for high throughput determination of organophosphorus flame retardants in environmental water[J].Journal of Chromatography A, 2011, 1218: 6705-6711
|
[6] |
Stapleton H M, Klosterhaus S, Eagle S, et al. Detection of organophosphate flame retardants in furniture foam and us house dust[J].Environmental Science & Technology, 2009, 43: 7490-7495
|
[7] |
Fries E Mihajlovic I. Pollution of soils with organophosphorus flame retardants and plasticizers[J].Journal of Environmental Monitoring, 2011, 13: 2692-2694
|
[8] |
Bollmann U E, Moeler A, Xie Z, et al. Occurrence and fate of organophosphorus flame retardants and plasticizers in coastal and marine surface waters[J].Water Research, 2012, 46: 531-538
|
[9] |
Garcia-LOpez M, Rodriguez I, Cela R, et al. Determination of organophosphate flame retardants and plasticizers in sediment samples using microwave-assisted extraction and gas chromatography with inductively coupled plasma mass spectrometry[J].Talanta, 2009, 79: 824-829
|
[10] |
Qu X, Alvarez P J J, Li Q. Applications of nanotechnology in water and wastewater treatment[J].Water research, 2013, 47: 3931-3946
|
[11] |
Yang K, Xing B. Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application[J].Chemical Reviews, 2010, 110: 5989-6008
|
[12] |
Yang K, Zhu L, Xing B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials[J].Environmental Science & Technology, 2006, 40: 1855-1861
|
[13] |
Wang F, Yao J, Sun K, et al. Adsorption of dialkyl phthalate esters on carbon nanotubes[J].Environmental Science & Technology, 2010, 44: 6985-6991
|
[14] |
Oleszczuk P, Pan B, Xing B. Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes[J].Environmental Science & Technology, 2009, 43: 9167-9173
|
[15] |
Yang K, Xing B. Adsorption of fulvic acid by carbon nanotubes from water[J]. Environmental Pollution,2009, 157: 1095-1100
|
[16] |
Hirsch A. Functionalization of single-walled carbon nanotubes[J].Angewandte Chemie-International Edition, 2002, 41: 1853-1859
|
[17] |
Pan B, Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes[J].Environmental Science & Technology, 2008, 42: 9005-9013
|
[18] |
Lu C Y, Chiu H S. Adsorption of zinc(Ⅱ) from water with purified carbon nanotubes[J].Chemical Engineering Science, 2006, 61: 1138-1145
|
[19] |
Cho H H, Smith B A, Wnuk J D, et al. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes[J].Environmental Science & Technology, 2008, 42: 2899-2905
|
[20] |
David A B, Andrei N K, Noncovalent interactions of molecules with single walled carbon nanotubes[J].Chemical Society Reviews, 2006, 35: 637-659
|
[21] |
Piao L, Liu Q, Li Y. Interaction of amino acids and single-wall carbon nanotubes[J].Journal of Physical Chemistry C, 2012, 116: 1724-1731
|