[1] Reemtsma T, Benito Quintana J R, Rodil M, et al. Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate[J].Trac-Trends in Analytical Chemistry, 2008, 27: 727-737
[2] Quintana J B, Rodil R, Reemtsma T, et al. Organophosphorus flame retardants and plasticizers in water and air Ⅱ. Analytical methodology[J].Trac-Trends in Analytical Chemistry, 2008, 27: 904-915
[3] van der Veen I, de Boer J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis[J].Chemosphere, 2012, 88: 1119-1153
[4] Mihajlovic I, Miloradov M V, Fries E. Application of Twisselmann Extraction, SPME, and GC-MS to assess input sources for organophosphate esters into soil[J].Environmental Science & Technology, 2011, 45: 2264-2269
[5] Wang X., Liu J, Yin Y. Development of an ultra-high-performance liquid chromatography-tandem mass spectrometry method for high throughput determination of organophosphorus flame retardants in environmental water[J].Journal of Chromatography A, 2011, 1218: 6705-6711
[6] Stapleton H M, Klosterhaus S, Eagle S, et al. Detection of organophosphate flame retardants in furniture foam and us house dust[J].Environmental Science & Technology, 2009, 43: 7490-7495
[7] Fries E Mihajlovic I. Pollution of soils with organophosphorus flame retardants and plasticizers[J].Journal of Environmental Monitoring, 2011, 13: 2692-2694
[8] Bollmann U E, Moeler A, Xie Z, et al. Occurrence and fate of organophosphorus flame retardants and plasticizers in coastal and marine surface waters[J].Water Research, 2012, 46: 531-538
[9] Garcia-LOpez M, Rodriguez I, Cela R, et al. Determination of organophosphate flame retardants and plasticizers in sediment samples using microwave-assisted extraction and gas chromatography with inductively coupled plasma mass spectrometry[J].Talanta, 2009, 79: 824-829
[10] Qu X, Alvarez P J J, Li Q. Applications of nanotechnology in water and wastewater treatment[J].Water research, 2013, 47: 3931-3946
[11] Yang K, Xing B. Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application[J].Chemical Reviews, 2010, 110: 5989-6008
[12] Yang K, Zhu L, Xing B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials[J].Environmental Science & Technology, 2006, 40: 1855-1861
[13] Wang F, Yao J, Sun K, et al. Adsorption of dialkyl phthalate esters on carbon nanotubes[J].Environmental Science & Technology, 2010, 44: 6985-6991
[14] Oleszczuk P, Pan B, Xing B. Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes[J].Environmental Science & Technology, 2009, 43: 9167-9173
[15] Yang K, Xing B. Adsorption of fulvic acid by carbon nanotubes from water[J]. Environmental Pollution,2009, 157: 1095-1100
[16] Hirsch A. Functionalization of single-walled carbon nanotubes[J].Angewandte Chemie-International Edition, 2002, 41: 1853-1859
[17] Pan B, Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes[J].Environmental Science & Technology, 2008, 42: 9005-9013
[18] Lu C Y, Chiu H S. Adsorption of zinc(Ⅱ) from water with purified carbon nanotubes[J].Chemical Engineering Science, 2006, 61: 1138-1145
[19] Cho H H, Smith B A, Wnuk J D, et al. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes[J].Environmental Science & Technology, 2008, 42: 2899-2905
[20] David A B, Andrei N K, Noncovalent interactions of molecules with single walled carbon nanotubes[J].Chemical Society Reviews, 2006, 35: 637-659
[21] Piao L, Liu Q, Li Y. Interaction of amino acids and single-wall carbon nanotubes[J].Journal of Physical Chemistry C, 2012, 116: 1724-1731