基于宏基因组技术研究亚慢性氯仿暴露对小鼠肠道微生物群的影响
Macrogenomic-based Study of Effects of Subchronic Chloroform Exposure on the Gut Microbiota of Mice
-
摘要: 肠道微生物群是一个复杂的共生细菌生态系统,与宿主健康状况,代谢表型,营养吸收或产生,以及免疫系统调节有关。氯仿是1种城市常见的有毒的环境污染物,人类可能通过包括空气或自来水在内的各种媒介接触到氯仿。在本研究中,将9只SPF级(无特定病原体)昆明雌性小鼠分为3组(每组3只),3组灌胃分别暴露于0、50和150 mg·kg-1小鼠体质量的剂量中,持续30 d。我们的实验结果揭示了以下几点:(1)亚慢性氯仿暴露显著改变了盲肠微生物群的物种组成和结构。在科水平上,在氯仿暴露组中,乳杆菌科(Lactobacillaceae)、康氏菌科(Kangiellaceae)等细菌的相对丰度显著降低。基于LEfSe线性判别分析表明,臭杆菌科(Odoribacteraceae)可作为氯仿暴露组的典型生物标志物。在属水平上,氯仿暴露使螺杆菌属(Helicobacter)、颤杆菌克属(Oscillibacter)等细菌的相对丰度显著增加,且与氯仿剂量呈正相关。(2)氯仿的暴露显著影响了微生物群功能基因的组成。基于代谢通路水平功能比较分析表明,花生四烯酸代谢和类固醇生物合成的相对丰度在对照组显著高于氯仿实验组,并与氯仿浓度的呈负相关;基于碳水化合物活性酶水平功能比较分析表明,如GH31、GT14、GT113、GH67等碳水化合物活性酶的相对丰度由于氯仿的暴露显著降低;基于抗生素抗性基因分析表明,如ARO:3000412、ARO:3000569、ARO:3001209、ARO:3002894等抗性基因的相对丰度在氯仿暴露高于对照组,且与氯仿剂量呈正相关。综上所述,我们的研究结果表明亚慢性氯仿暴露显著影响了小鼠盲肠微生物群的物种的组成结构,并通过扰乱肠道微生物群的组成结构,从而影响了花生四烯酸代谢、类固醇生物合成等新陈代谢,以及碳水化合物分解消化能力和抗生素抗性基因的组成。Abstract: The intestinal microbiota represents a sophisticated symbiotic bacterial ecosystem intricately linked to host health status, metabolic phenotypes, nutrient absorption or generation, and immune system modulation. Chloroform, a prevalent urban toxic environmental pollutant, can be encountered by humans through various vectors, including air and tap water. In this investigation, nine SPF Kunming female mice were stratified into three cohorts (3 mice per cohort) and subjected to oral gavage with chloroform doses of 0, 50, and 150 mg·kg-1 of body weight, respectively, over 30 d. Our empirical observations reveal the following: (1) Subacute chloroform exposure induces significant alterations in the taxonomic composition and structure of the cecal microbiota. Specifically, chloroform exposure results in a notable reduction in the relative abundance of bacterial families such as Lactobacillaceae and Kangiellaceae. Linear discriminant analysis effect size (LEfSe) identifies Odoribacteraceae as a potential signature taxon for the chloroform-exposed group. At the genus level, chloroform exposure correlates positively with the increased relative abundance of taxa such as Helicobacter and Oscillibacter. (2) Chloroform exposure exerts a discernible influence on the repertoire of functional microbial gene pathways. Comparative metabolic pathway analysis reveals a significantly elevated relative abundance of pathways associated with arachidonic acid metabolism and steroid biosynthesis in the control group compared to the chloroform-exposed group, exhibiting a negative correlation with chloroform dosage. Evaluation of carbohydrate-active enzyme profiles demonstrates a marked decrease in the relative abundance of enzyme genes such as GH31, GT14, GT113, and GH67 following chloroform exposure. Examination of antibiotic resistance gene profiles highlights an increased relative abundance of resistance genes, including ARO:3000412, ARO:3000569, ARO:3001209, and ARO:3002894, in the chloroform-exposed group relative to the control group, positively associated with chloroform dosage. In summary, our findings underscore the substantial impact of subacute chloroform exposure on the taxonomic composition and structure of the cecal microbiota in mice, consequently modulating arachidonic acid metabolism, steroid biosynthesis, carbohydrate degradation, and digestion, as well as the composition of antibiotic resistance genes via perturbation of intestinal microbiota composition.
-
Key words:
- chloroform /
- environmental pollutant /
- gut microbiota /
- metagenomics /
- species diversity /
- functional gene diversity
-
-
FASSARELLA M, BLAAK E E, PENDERS J, et al. Gut microbiome stability and resilience:elucidating the response to perturbations in order to modulate gut health[J]. Gut, 2021, 70(3):595-605. XU X F, XU P P, MA C, et al. Gut microbiota, host health, and polysaccharides[J]. Biotechnology advances, 2013, 31(2):318-337. LIN L, ZHANG J Q. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases[J]. BMC immunology, 2017, 18(1):2. YU D H, MENG X, DE VOS W M, et al. Implications of gut microbiota in complex human diseases[J]. International journal of molecular sciences, 2021, 22(23):12661. 丁晗,周童,王娟,等.典型环境污染物对肠道菌群的影响及机制研究进展[J].生态毒理学报, 2021, 16(2):34-49. DING H, ZHOU T, WANG J, et al. Research progress on the effects of typical environmental pollutants on gut microbiota and their underlying mechanisms[J]. Asian journal of ecotoxicology, 2021, 16(2):34-49.
SUN R L, XU K, JI S B, et al. Benzene exposure induces gut microbiota dysbiosis and metabolic disorder in mice[J]. Science of the total environment, 2020, 705:135879. ZHAO Y L, ZHOU C M, WU C, et al. Subchronic oral mercury caused intestinal injury and changed gut microbiota in mice[J]. Science of the total environment, 2020, 721:137639. XIA J Z, JIN C Y, PAN Z H, et al. Chronic exposure to low concentrations of lead induces metabolic disorder and dysbiosis of the gut microbiota in mice[J]. Science of the total environment, 2018, 631/632:439-448. LI Y X, ZUO Z Z, ZHANG B, et al. Impacts of early-life paraquat exposure on gut microbiota and body weight in adult mice[J]. Chemosphere, 2022, 291(Pt 3):133135. LEE J, KIM E S, ROH B S, et al. Occurrence of disinfection by-products in tap water distribution systems and their associated health risk[J]. Environmental monitoring and assessment, 2013, 185(9):7675-7691. MCCULLOCH A. Chloroform in the environment:occurrence, sources, sinks and effects[J]. Chemosphere, 2003, 50(10):1291-1308. RAMLUCKAN K, MOODLEY K G, BUX F. An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the Soxhlet extraction method[J]. Fuel, 2014, 116:103-108. MEEK M E, BEAUCHAMP R, LONG G, et al. Chloroform:exposure estimation, hazard characterization, and exposure-response analysis[J]. Journal of toxicology and environmental health part b, critical reviews, 2002, 5(3):283-334. SEKAR A, VARGHESE G K, RAVI VARMA M K. Chloroform:an emerging pollutant in the air[M]//Energy, environment, and sustainability. Singapore:Springer Singapore, 2021:101-129. PHILIP B K, ANAND S S, PALKAR P S, et al. Subchronic chloroform priming protects mice from a subsequently administered lethal dose of chloroform[J]. Toxicology and applied pharmacology, 2006, 216(1):108-121. ZHU S M, LI C, XU J J, et al. Exposure to chloramine and chloroform in tap water and adverse perinatal outcomes in Shanghai[J]. International journal of environmental research and public health, 2022, 19(11):6508. GOLDEN R J, HOLM S E, ROBINSON D E, et al. Chloroform mode of action:implications for cancer risk assessment[J]. Regulatory toxicology and pharmacology, 1997, 26(2):142-155. BHARAGAVA R N, PURCHASE D, SAXENA G, et al. Applications of metagenomics in microbial bioremediation of pollutants[M]//Microbial diversity in the genomic era. Amsterdam:Elsevier, 2019:459-477. COFFIN J C, GE R, YANG S, et al. Effect of trihalomethanes on cell proliferation and DNA methylation in female B6C3F1 mouse liver[J]. Toxicological sciences, 2000, 58(2):243-252. AUTTACHOAT W, GERMOLEC D R, COLLINS B J, et al. Immunotoxicological profile of chloroform in female B6C3F1 mice when administered in drinking water[J]. Drug and chemical toxicology, 2009, 32(1):77-87. JAYAWEERA D, ISLAM S, GUNJA N, et al. Chloroform ingestion causing severe gastrointestinal injury, hepatotoxicity and dermatitis confirmed with plasma chloroform concentrations[J]. Clinical toxicology, 2017, 55(2):147-150. LIU Y H, LI Y H, XIA Y H, et al. The dysbiosis of gut microbiota caused by low-dose cadmium aggravate the injury of mice liver through increasing intestinal permeability[J]. Microorganisms, 2020, 8(2):211. FENG D, ZHANG H M, JIANG X, et al. Bisphenol A exposure induces gut microbiota dysbiosis and consequent activation of gut-liver axis leading to hepatic steatosis in CD-1 mice[J]. Environmental pollution, 2020, 265(Pt A):114880. GOSALBES M J, DURBÁN A, PIGNATELLI M, et al. Metatranscriptomic approach to analyze the functional human gut microbiota[J]. PLoS One, 2011, 6(3):e17447. ENRIGHT E F, GRIFFIN B T, GAHAN C G M, et al. Microbiome-mediated bile acid modification:role in intestinal drug absorption and metabolism[J]. Pharmacological research, 2018, 133:170-186. ZAWISTOWSKA-ROJEK A, KOŚMIDER A, STĘPIEŃK, et al. Adhesion and aggregation properties of Lactobacillaceae strains as protection ways against enteropathogenic bacteria[J]. Archives of microbiology, 2022, 204(5):285. PUIG R, PELLITERO S, MARTINEZ E, et al. Changes in gut microbiota and metabolic profiles after sleeve gastrectomy[J]. Endocrine abstracts, 2018:56. KUSTERS J G, VAN VLIET A H M, KUIPERS E J. Pathogenesis of Helicobacter pylori infection[J]. Clinical microbiology reviews, 2006, 19(3):449-490. CROWE S E. Helicobacter pylori infection[J]. New England journal of medicine, 2019, 380(12):1158-1165. ADAK A, KHAN M R. An insight into gut microbiota and its functionalities[J]. Cellular and molecular life sciences, 2019, 76(3):473-493. QI X Y, YUN C Y, PANG Y L, et al. The impact of the gut microbiota on the reproductive and metabolic endocrine system[J]. Gut microbes, 2021, 13(1):1-21. ZHOU Z W, WANG D, XU X Y, et al. Myofibrillar protein-chlorogenic acid complexes ameliorate glucose metabolism via modulating gut microbiota in a type 2 diabetic rat model[J]. Food chemistry, 2023, 409:135195. WANG B, WU L J, CHEN J, et al. Metabolism pathways of arachidonic acids:mechanisms and potential therapeutic targets[J]. Signal Transduction and Targeted Therapy, 2021, 6(1):94 HANNA V S, HAFEZ E A A. Synopsis of arachidonic acid metabolism:a review[J]. Journal of advanced research, 2018, 11:23-32. WANG T Q, FU X J, CHEN Q F, et al. Arachidonic acid metabolism and kidney inflammation[J]. International journal of molecular sciences, 2019, 20(15):3683. LIN Z S, WU J M, WANG J P, et al. Dietary Lactobacillus reuteri prevent from inflammation mediated apoptosis of liver via improving intestinal microbiota and bile acid metabolism[J]. Food chemistry, 2023, 404(Pt B):134643. LUCAS L N, BARRETT K, KERBY R L, et al. Dominant bacterial[WT《Times New Roman》]phyla[WT《Times New Roman》] from the human gut show widespread ability to transform and conjugate bile acids[J]. mSystems, 2021, 6:e0080521. HOSHINO Y, GAUCHER E A. Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(25):e2101276118. CANTAREL B L, COUTINHO P M, RANCUREL C, et al. The carbohydrate-active EnZymes database (CAZy):an expert resource for glycogenomics[J]. Nucleic acids research, 2009, 37(Database issue):D233-D238. KAUSHAL G, THAKUR M, RAI A K, et al. A comprehensive metagenomic analysis framework revealing microbiome profile and potential for hydrocarbon degradation and carbohydrate metabolism in a Himalayan artificial lake[J]. Sustainability, 2022, 14(18):11455. REID J E S J, YAKUBOV G E, LAWRENCE S J. Non-starch polysaccharides in beer and brewing:a review of their occurrence and significance[J]. Critical reviews in food science and nutrition, 2024, 64(3):837-851. TUDU M, SAMANTA A. Natural polysaccharides:chemical properties and application in pharmaceutical formulations[J]. European polymer journal, 2023, 184:111801. BEDU-FERRARI C, BISCARRAT P, LANGELLA P, et al. Prebiotics and the human gut microbiota:from breakdown mechanisms to the impact on metabolic health[J]. Nutrients, 2022, 14(10):2096. ZHAO T T, YUE H, PENG J F, et al. Degradation of xylan by human gut Bacteroides xylanisolvens XB1A[J]. Carbohydrate polymers, 2023, 315:121005. LI Y M, SHI X M, ZUO Y, et al. Multiplexed target enrichment enables efficient and in-depth analysis of antimicrobial resistome in metagenomes[J]. Microbiology Spectrum, 2022, 10(6):e0229722. THANGARAJU P, VENKATESAN S. WHO ten threats to global health in 2019:antimicrobial resistance[J]. Cukurova medical journal, 2019, 44(3):1150-1151. MAKKAEW P, KONGPRAJUG A, CHYEROCHANA N, et al. Persisting antibiotic resistance gene pollution and its association with human sewage sources in tropical marine beach waters[J]. International journal of hygiene and environmental health, 2021, 238:113859. ALCOCK B P, HUYNH W, CHALIL R, et al. CARD 2023:expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database[J]. Nucleic acids research, 2023, 51(D1):D690-D699. RAHMAN S F, OLM M R, MOROWITZ M J, et al. Machine learning leveraging genomes from metagenomes identifies influential antibiotic resistance genes in the infant gut microbiome[J]. mSystems, 2018, 3(1):e00123-17. RIAZ RAJOKA M S, THIRUMDAS R, MEHWISH H M, et al. Role of food antioxidants in modulating gut microbial communities:novel understandings in intestinal oxidative stress damage and their impact on host health[J]. Antioxidants, 2021, 10(10):1563. -

计量
- 文章访问数: 174
- HTML全文浏览数: 174
- PDF下载数: 53
- 施引文献: 0