高效氯氰菊酯对秀丽隐杆线虫毒性作用的立体选择性研究
Stereoselective Toxicity of Beta-cypermethrin and Its Enantiomer Exposures on Caenorhabditis elegans
-
摘要: 为探究高效氯氰菊酯(β-cypermethrin,β-CYP)及其对映体毒性的立体选择性,以秀丽隐杆线虫(C.elegans)为模型,分别评估了β-CYP及其4种对映体对线虫的毒性作用,包括生长发育、摄食行为、运动能力、寿命、体内活性氧自由基(ROS)及抗氧化酶活性等。结果表明,5种药物分别对线虫进行染毒后,暴露组与溶剂对照组相比,生长发育毒性排序为1R-trans-αS>β-CYP>1S-trans-αR>1R-cis-αS>1S-cis-αR,摄食行为毒性排序为1R-trans-αS>1R-cis-αS>1S-trans-αR>β-CYP>1S-cis-αR,对线虫运动行为影响不显著,对平均寿命抑制作用排序为1R-trans-αS>1S-trans-αR>1S-cis-αR>1R-cis-αS>β-CYP,对线虫体内ROS水平、SOD-3和GST-4抗氧化酶的活性抑制作用排序均表现为反式异构体>外消旋体>顺式异构体,不同药物对线虫内部抗氧化酶的调节作用也存在差异。综上所述,4种手性对映体对线虫的毒性和抗氧化作用存在选择性差异,其中1R-trans-αS对线虫的毒性作用普遍强于外消旋体及其他对映单体。Abstract: In this study, we investigated the stereo-selective toxicity of beta-cypermethrin (β-CYP) and its four stereoisomers using Caenorhabditis elegans (C. elegans) as a model organism. We assessed the toxicity of β-CYP and its four stereoisomers on C. elegans growth and development, feeding behavior, locomotion, lifespan, intracellular reactive oxygen species (ROS) levels, and antioxidant enzyme activities. The results indicated that, compared to the blank control group, the ranking of toxicity for growth and development was 1R-trans-αS > β-CYP > 1S-trans-αR > 1R-cis-αS > 1S-cis-αR. For feeding behavior, the ranking was 1R-trans-αS > 1R-cis-αS > 1S-trans-αR > β-CYP > 1S-cis-αR. There was no significant impact on locomotion. The suppression on average lifespan followed the order of 1R-trans-αS > 1S-trans-αR > 1S-cis-αR > 1R-cis-αS > β-CYP. In terms of intracellular ROS levels and the activities of antioxidant enzymes SOD-3 and GST-4, the order of inhibitory effects was generally:trans-isomers > racemate > cis-isomers. Furthermore, different compounds exhibited varied regulatory effects on the nematode's internal antioxidant enzymes. In summary, the stereoisomers displayed selective differences in their toxicity and antioxidant effects on C. elegans, with 1R-trans-αS consistently demonstrating greater toxicity than the racemate and other stereoisomers.
-
Key words:
- beta-cypermethrin /
- Caenorhabditis elegans /
- ecological risks /
- chiral enantiomers /
- growth inhibition
-
-
Ye J, Zhao M R, Liu J, et al. Enantioselectivity in environmental risk assessment of modern chiral pesticides [J]. Environmental Pollution, 2010, 158(7):2371-2383 Sharma B. Nature of chiral drugs and their occurrence in environment [J]. Journal of Xenobiotics, 2014, 4(1):14-17 Qu H, Wang P, Ma R X, et al. Enantioselective toxicity, bioaccumulation and degradation of the chiral insecticide fipronil in earthworms (Eisenia feotida) [J]. The Science of the Total Environment, 2014, 485-486:415-420 王宁, 李建华, 谭文丽, 等. 有机磷农药手性对映体生物活性、生态毒性及环境行为研究[J]. 热带农业工程, 2019, 43(4):49-54 Wang N, Li J H, Tan W L, et al. Bioactivity, ecotoxicity and environmental behavior of chiral enantiomers of organophosphorus pesticides [J]. Tropical Agricultural Engineering, 2019, 43(4):49-54(in Chinese)
郭浩铭, 魏一木, 刘雪科, 等. 手性农药选择性生物活性与毒性效应研究进展[J]. 农药学学报, 2022, 24(5):1108-1124 Guo H M, Wei Y M, Liu X K, et al. Research progress on the stereoselective bioactivity and toxicity of chiral pesticides [J]. Chinese Journal of Pesticide Science, 2022, 24(5):1108-1124(in Chinese)
范瑞芳, 方展强, 于志强, 等. 手性农药的环境行为研究进展[J]. 生态环境, 2008, 17(4):1690-1695 Fan R F, Fang Z Q, Yu Z Q, et al. Research progress in environmental fate of chiral pesticides [J]. Ecology and Environment, 2008, 17(4):1690-1695(in Chinese)
Ulrich E M, Morrison C N, Goldsmith M R, et al. Chiral pesticides:Identification, description, and environmental implications [J]. Reviews of Environmental Contamination and Toxicology, 2012, 217:1-74 程凤宁. 典型手性农药的光解及土壤降解中的手性稳定性[D]. 石家庄:河北科技大学, 2011:6-7 Cheng F N. Rresearch on photoloysis of typical chiral pesticides and the chiral stability of degradation in soil [D]. Shijiazhuang:Hebei University of Science and Technology, 2011:6 -7(in Chinese)
Kallenborn R, Hühnerfuss H, Aboul-Enein H, et al. Chiral environmental pollutants:Analytical methods, environmental implications and toxicology [J]. Chiral Environmental Pollutants, 2021, 1:1-12 Wang Z, Tan Y T, Li Y H, et al. Comprehensive study of pydiflumetofen in Danio rerio:Enantioselective insight into the toxic mechanism and fate [J]. Environment International, 2022, 167:107406 李玲, 李俊杰, 王俊英, 等. 手性农药水胺硫磷对浮游生物氧化应激的对映体选择性影响[J]. 生态毒理学报, 2021, 16(3):264-272 Li L, Li J J, Wang J Y, et al. Enantiomeric selectivity of chiral pesticide isocarbophos on oxidative stress in plankton [J]. Asian Journal of Ecotoxicology, 2021, 16(3):264-272(in Chinese)
苍涛, 王新全, 王彦华, 等. 手性氟虫腈对意大利蜜蜂和稻螟赤眼蜂的急性毒性及安全评价[J]. 生态毒理学报, 2012, 7(3):326-330 Cang T, Wang X Q, Wang Y H, et al. Acute toxicities and safety evaluation of chiral fipronil to Apis mellifera L. and Trichogramma japonicum Ashmead [J]. Asian Journal of Ecotoxicology, 2012, 7(3):326-330(in Chinese)
Heller J J. Beta-cypermethrin:A new broad spectrum molecule for the control of insect pests in row crops, fruits, grapes and vegetables in Europe [C]. Montpellier, France:Association Française De Protection Des Plantes (AFPP), 2011:690-697 Zhang Q Q, Li W Q, Lu Z B, et al. Sublethal effects of beta-cypermethrin on the bird cherry-oat aphid Rhopalosiphum padi (Hemiptera:Aphididae) [J]. Journal of Asia-Pacific Entomology, 2019, 22(3):693-698 Ambwani S, Kumar Ambwani T, Singh Chauhan R. Ameliorating effects of badri cow urine on cypermethrin induced immunotoxicity and oxidative stress in chicken lymphocytes culture system [J]. Biosciences, Biotechnology Research Asia, 2018, 15(3):711-717 李海斌, 李君. 氯氰菊酯毒作用研究进展[J]. 环境与健康杂志, 2007, 24(5):372-374 Li H B, Li J. Advance on cypermethrine toxicity research [J]. Journal of Environment and Health, 2007, 24(5):372-374(in Chinese)
王冬群, 华晓霞. 慈溪市葡萄农药残留膳食摄入风险评估[J]. 食品安全质量检测学报, 2017, 8(3):1018-1024 Wang D Q, Hua X X. Dietary intake risk assessment of pesticide residues on grape in Cixi City [J]. Journal of Food Safety & Quality, 2017, 8(3):1018-1024(in Chinese)
张琛. 高效氯氰菊酯降解菌的筛选、鉴定、疏水性及降解性能研究[D]. 泰安:山东农业大学, 2009:5-23 Zhang C. Isolation, characterization, hydrophobicity and mineralizing mechanism of beta-cypermethrin degrading strains [D]. Taian:Shandong Agricultural University, 2009:5 -23(in Chinese)
Li H Z, Cheng F, Wei Y L, et al. Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates:An overview [J]. Journal of Hazardous Materials, 2017, 324:258-271 何华, 徐存华, 孙成, 等. 高效氯氰菊酯在土壤中的降解动态[J]. 中国环境科学, 2003, 23(5):490-492 He H, Xu C H, Sun C, et al. The degradation trends of high effect cypermethrin in soils [J]. China Environmental Science, 2003, 23(5):490-492(in Chinese)
朱盼, 万欢, 黄芮, 等. 广东省本地产茶叶农药多残留累积风险评估[J]. 中国食品卫生杂志, 2022, 34(2):308-314 Zhu P, Wan H, Huang R, et al. Cumulative intake risk assessment of multi-pesticides in local tea samples in Guangdong Province [J]. Chinese Journal of Food Hygiene, 2022, 34(2):308-314(in Chinese)
范志金, 刘丰茂, 钱传范. 氯氰菊酯的名称和组成及其光学异构体[J]. 农药科学与管理, 1999, 20(2):9-11 , 17 Fan Z J, Liu F M, Qian C F. The name and composition of cypermethrin and its optical isomers [J]. Pesticide Science and Administration, 1999, 20(2):9-11, 17(in Chinese)
徐鹏. 手性农药高效氯氟氰菊酯选择性降解研究[D]. 长沙:湖南农业大学, 2012:12-14 Xu P. Studies on the enantioselective degradation of chiral pesticides lambda-cyhalothrin [D]. Changsha:Hunan Agricultural University, 2012:12 -14(in Chinese)
葛平, 刘娜, 金小伟, 等. 手性药物的水环境行为、毒性效应及生态风险[J]. 生态毒理学报, 2023, 18(1):191-205 Ge P, Liu N, Jin X W, et al. Chiral pharmaceuticals in aquatic environments:Occurrence, fate, toxicity, and ecological risk [J]. Asian Journal of Ecotoxicology, 2023, 18(1):191-205(in Chinese)
国家卫生健康委员会, 农业农村部, 国家市场监督管理总局. 食品安全国家标准食品中农药最大残留限量:GB 2763-2021[S]. 北京:中国标准出版社, 2021 华欣, 陈海波, 李杰, 等. 农药对秀丽隐杆线虫毒性效应及其机制的研究进展[J]. 生态毒理学报, 2020, 15(1):34-43 Hua X, Chen H B, Li J, et al. Review on toxicology of pesticides in the nematode Caenorhabditis elegans [J]. Asian Journal of Ecotoxicology, 2020, 15(1):34-43(in Chinese)
王佳佳. 高效氯氰菊酯的手性拆分及其对映体毒性研究[D]. 杭州:浙江工业大学, 2008:25-35 Wang J J. Study on the separation and toxicity of enantiomers of beta-cypermethrin [D]. Hangzhou:Zhejiang University of Technology, 2008:25 -35(in Chinese)
Mu X Y, Shen G M, Huang Y, et al. The enantioselective toxicity and oxidative stress of beta-cypermethrin on zebrafish [J]. Environmental Pollution, 2017, 229:312-320 Rosenblat M, Coleman R, Aviram M. Increased macrophage glutathione content reduces cell-mediated oxidation of LDL and atherosclerosis in apolipoprotein E-deficient mice [J]. Atherosclerosis, 2002, 163(1):17-28 Schulz J B, Lindenau J, Seyfried J, et al. Glutathione, oxidative stress and neurodegeneration [J]. European Journal of Biochemistry, 2000, 267(16):4904-4911 Wang H, Ki J S. Molecular characterization and expression analysis of copper-zinc superoxide dismutases from the freshwater alga Closterium ehrenbergii under metal stress [J]. Environmental Toxicology, 2020, 35(1):5-14 Yuan M, Wang C L, Wang Y F, et al. Progress in the research of superoxide dismutase [J]. Chinese Journal of Histochemistry and Cytochemistry, 2016, 25:550-558 Madhu, Sharma A, Kaur A, et al. Glutathione peroxidases in plants:Innumerable role in abiotic stress tolerance and plant development [J]. Journal of Plant Growth Regulation, 2023, 42(2):598-613 Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease [J]. The International Journal of Biochemistry & Cell Biology, 2007, 39(1):44-84 -

计量
- 文章访问数: 1411
- HTML全文浏览数: 1411
- PDF下载数: 145
- 施引文献: 0