新精神活性物质氯胺酮对斑马鱼幼鱼的神经毒性
Neurotoxicity of A New Psychoactive Substance Ketamine on Zebrafish Larvae
-
摘要: 氯胺酮(ketamine, KET)是一种新精神活性物质,使用后会产生致幻、视听分离感和欣快感。KET已经在地表水中广泛检出,浓度高达420 ng·L-1。已有大量研究表明KET对人、鼠类等哺乳动物具有强烈的神经毒性,但KET对鱼类的神经毒性及潜在机制尚不清晰。目前研究多关注KET对非竞争性N-甲基-D-天门冬氨酸(N-methyl-D-aspartate, NMDA)受体的影响,较少考虑多巴胺(dopamine, DA)和γ-氨基丁酸(GABA)通路的影响。为研究KET对斑马鱼幼鱼早期神经毒性及其作用机制,将2 hpf (hours post-fertilization)的斑马鱼胚胎分为对照组和3个暴露组(10、100和1 000 ng·L-1),分析KET对斑马鱼胚胎和幼鱼行为、活性氧水平以及神经相关基因转录水平的影响。结果表明,10 ng·L-1 KET显著降低7 dpf斑马鱼心率(P<0.05)。行为分析显示,100 ng·L-1和1 000 ng·L-1 KET显著增加斑马鱼胚胎自发摆尾运动频率(P<0.001)。1 000 ng·L-1 KET显著升高27 hpf斑马鱼对触碰反应的敏感程度、而降低48 hpf斑马鱼的敏感程度(P<0.01)。10 ng·L-1 KET显著降低斑马鱼在黑暗状态下的趋触性(P<0.05)。活性氧水平检测结果表明,1 000 ng·L-1 KET显著增加斑马鱼幼鱼腹部ROS荧光信号强度(P<0.05)。qPCR分析结果表明,10 ng·L-1 KET下调多巴胺受体基因drd3转录水平,100 ng·L-1 KET上调钾内向整流通道亚家族J成员6基因kcnj6转录水平,1 000 ng·L-1 KET上调γ-氨基丁酸转运体基因slc6a1b、钾内向整流通道亚家族J成员5基因kcnj5转录水平。上述结果表明,KET通过影响DA和GABA通路来显著影响斑马鱼幼鱼行为和神经相关基因转录水平,产生神经毒性。Abstract: Ketamine (KET) is a new psychoactive substance that can produce hallucinations, audiovisual separation and euphoria. KET has been widely detected in surface water at concentrations up to 420 ng·L-1. Some studies show that KET has strong neurotoxicity to human, rodents and other mammals, but the neurotoxicity of KET to fish and its potential mechanism are not known. Current studies have focused more on the effect of KET on non-competitive N-methyl-D-aspartate (NMDA) receptors, and less on the effects of dopamine (DA) and γ-aminobutyric acid (GABA) pathways. To investigate the neurotoxicity of KET on zebrafish larvae and its mechanism, 2 hpf (hours post-fertilization) zebrafish embryos were divided into control group and three KET groups (10, 100 and 1 000 ng·L-1). The effects of KET on the behavior, reactive oxygen species level and nerve-related gene transcription of zebrafish embryos and larvae were analyzed. The results showed that 10 ng·L-1 KET apparently reduced the heart rate of 7 dpf zebrafish (P<0.05). Behavioral analysis revealed that 100 ng·L-1 and 1 000 ng·L-1 KET significantly enhanced the frequency of spontaneous tail contraction in embryos (P<0.001). 1 000 ng·L-1 KET significantly elevated the sensitivity of touch response at 27 hpf zebrafish, while decreased the sensitivity at 48 hpf zebrafish (P<0.01). 10 ng·L-1 KET obviously reduced the degree of thigmotaxis of zebrafish in dark (P<0.05). The results of ROS showed that 1 000 ng·L-1 KET markedly increased the ROS fluorescence signal intensity in the abdomen of zebrafish larvae (P<0.05). The qPCR data showed that 10 ng·L-1 KET reduced the transcription of dopamine receptor gene drd3, 100 ng·L-1 KET enhanced the transcription of potassium inwardly rectifying channel subfamily J member 6 gene kcnj6, 1 000 ng·L-1 KET increased the transcriptions of GABA transporter gene slc6a1b and potassium inwardly rectifying channel subfamily J member 5 gene kcnj5. The above results indicated that KET could affect the behavior and the transcriptions of nerve-related genes of zebrafish larvae by affecting the DA and GABA pathways, which resulted in neurotoxicity in fish.
-
Key words:
- ketamine /
- zebrafish /
- neurotoxicity /
- cardiotoxicity
-
-
United Nations Office on Drugs and Crime. World Drug Report 2022 [R]. New York: United Nations Publications, 2022 Jansen K L R. A review of the nonmedical use of ketamine: Use, users and consequences [J]. Journal of Psychoactive Drugs, 2000, 32(4): 419-433 Curran H V, Morgan C. Cognitive, dissociative and psychotogenic effects of ketamine in recreational users on the night of drug use and 3 days later [J]. Addiction, 2000, 95(4): 575-590 郑涵予, 王雪. 氯胺酮神经精神毒性的研究进展[J]. 中国药物依赖性杂志, 2010, 19(6): 450-453 Bobo W V, Miller S C. Ketamine as a preferred substance of abuse [J]. American Journal on Addictions, 2002, 11(4): 332-334 Wang K C, Shih T S, Cheng S G. Use of SPE and LC/TIS/MS/MS for rapid detection and quantitation of ketamine and its metabolite, norketamine, in urine [J]. Forensic Science International, 2005, 147(1): 81-88 Du P, Li K Y, Li J, et al. Methamphetamine and ketamine use in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology [J]. Water Research, 2015, 84: 76-84 Lin A Y C, Lee W N, Wang X H. Ketamine and the metabolite norketamine: Persistence and phototransformation toxicity in hospital wastewater and surface water [J]. Water Research, 2014, 53: 351-360 Wang Z L, Han S, Cai M, et al. Environmental behavior of methamphetamine and ketamine in aquatic ecosystem: Degradation, bioaccumulation, distribution, and associated shift in toxicity and bacterial community [J]. Water Research, 2020, 174: 115585 Wang Z L, Xu Z Q, Li X Q. Impacts of methamphetamine and ketamine on C. elegans’s physiological functions at environmentally relevant concentrations and eco-risk assessment in surface waters [J]. Journal of Hazardous Materials, 2019, 363: 268-276 Baker D R, Kasprzyk-Hordern B. Multi-residue analysis of drugs of abuse in wastewater and surface water by solid-phase extraction and liquid chromatography-positive electrospray ionisation tandem mass spectrometry [J]. Journal of Chromatography A, 2011, 1218(12): 1620-1631 Vazquez-Roig P, Andreu V, Blasco C, et al. Spatial distribution of illicit drugs in surface waters of the natural park of Pego-Oliva Marsh (Valencia, Spain) [J]. Environmental Science and Pollution Research International, 2012, 19(4): 971-982 Liao P H, Hwang C C, Chen T H, et al. Developmental exposures to waterborne abused drugs alter physiological function and larval locomotion in early life stages of medaka fish [J]. Aquatic Toxicology, 2015, 165: 84-92 Riehl R, Kyzar E, Allain A, et al. Behavioral and physiological effects of acute ketamine exposure in adult zebrafish [J]. Neurotoxicology and Teratology, 2011, 33(6): 658-667 Félix L M, Antunes L M, Coimbra A M. Ketamine NMDA receptor-independent toxicity during zebrafish (Danio rerio) embryonic development [J]. Neurotoxicology and Teratology, 2014, 41: 27-34 Schier A F. The maternal-zygotic transition: Death and birth of RNAs [J]. Science, 2007, 316(5823): 406-407 Guo R, Liu G J, Du M, et al. Early ketamine exposure results in cardiac enlargement and heart dysfunction in Xenopus embryos [J]. BMC Anesthesiology, 2015, 16(1): 23 Li S W, Wang Y H, Lin A Y C. Ecotoxicological effect of ketamine: Evidence of acute, chronic and photolysis toxicity to Daphnia magna [J]. Ecotoxicology and Environmental Safety, 2017, 143: 173-179 Shi W J, Ying G G, Huang G Y, et al. Transcriptional and biochemical alterations in zebrafish eleuthero-embryos (Danio rerio) after exposure to synthetic progestogen dydrogesterone [J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99(1): 39-45 Kimmel C B, Ballard W W, Kimmel S R, et al. Stages of embryonic development of the zebrafish [J]. Developmental Dynamics, 1995, 203(3): 253-310 Sztal T E, Ruparelia A A, Williams C, et al. Using touch-evoked response and locomotion assays to assess muscle performance and function in zebrafish [J]. Journal of Visualized Experiments, 2016, 116: 54431 Saint-Amant L, Drapeau P. Time course of the development of motor behaviors in the zebrafish embryo [J]. Journal of Neurobiology, 1998, 37(4): 622-632 Grunwald D J, Kimmel C B, Westerfield M, et al. A neural degeneration mutation that spares primary neurons in the zebrafish [J]. Developmental Biology, 1988, 126(1): 115-128 邹苏琪, 殷梧, 杨昱鹏, 等. 斑马鱼行为学实验在神经科学中的应用[J]. 生物化学与生物物理进展, 2009, 36(1): 5-12 Zou S Q, Yin W, Yang Y P, et al. The ethology application of zebrafish in neuroscience [J]. Progress in Biochemistry and Biophysics, 2009, 36(1): 5-12 (in Chinese)
Carmean V, Yonkers M A, Tellez M B, et al. Pigk mutation underlies macho behavior and affects Rohon-Beard cell excitability [J]. Journal of Neurophysiology, 2015, 114(2): 1146-1157 Stanley K A, Curtis L R, Simonich S L, et al. Endosulfan Ⅰ and endosulfan sulfate disrupts zebrafish embryonic development [J]. Aquatic Toxicology, 2009, 95(4): 355-361 Schnörr S J, Steenbergen P J, Richardson M K, et al. Measuring thigmotaxis in larval zebrafish [J]. Behavioural Brain Research, 2012, 228(2): 367-374 Hill A J, Teraoka H, Heideman W, et al. Zebrafish as a model vertebrate for investigating chemical toxicity [J]. Toxicological Sciences, 2005, 86(1): 6-19 Li J J, Zhang Y, Liu K C, et al. Xiaoaiping induces developmental toxicity in zebrafish embryos through activation of ER stress, apoptosis and the Wnt pathway [J]. Frontiers in Pharmacology, 2018, 9: 1250 Kopf P G, Walker M K. Overview of developmental heart defects by dioxins, PCBs, and pesticides [J]. Journal of Environmental Science and Health, Part C, 2009, 27(4): 276-285 Kanungo J, Cuevas E, Ali S F, et al. L-Carnitine rescues ketamine-induced attenuated heart rate and MAPK (ERK) activity in zebrafish embryos [J]. Reproductive Toxicology, 2012, 33(2): 205-212 Hotchkiss C E, Wang C, Slikker W Jr. Effect of prolonged ketamine exposure on cardiovascular physiology in pregnant and infant rhesus monkeys (Macaca mulatta) [J]. Journal of the American Association for Laboratory Animal Science, 2007, 46(6): 21-28 李岳振, 王文军, 王航, 等. 小剂量氯胺酮麻醉对感染性休克患者C-反应蛋白的影响[J]. 中华医院感染学杂志, 2016, 26(11): 2519-2521 Li Y Z, Wang W J, Wang H, et al. Impact of low dose of ketamine anesthesia on C-reactive protein of septic shock patients [J]. Chinese Journal of Nosocomiology, 2016, 26(11): 2519-2521 (in Chinese)
Drapeau P, Saint-Amant L, Buss R R, et al. Development of the locomotor network in zebrafish [J]. Progress in Neurobiology, 2002, 68(2): 85-111 Saint-Amant L. Development of motor networks in zebrafish embryos [J]. Zebrafish, 2006, 3(2): 173-190 Richendrfer H, Creton R, Colwill R M. Zebrafish [M]. Hauppauge: Nova Science Publishers, 2014: 245-264 Borla M A, Palecek B, Budick S, et al. Prey capture by larval zebrafish: Evidence for fine axial motor control [J]. Brain, Behavior and Evolution, 2002, 60(4): 207-229 Leuthold D, Klüver N, Altenburger R, et al. Can environmentally relevant neuroactive chemicals specifically be detected with the locomotor response test in zebrafish embryos? [J]. Environmental Science & Technology, 2019, 53(1): 482-493 吴敏. 地西泮药物污染对斑马鱼神经行为毒性及机制研究[D]. 镇江: 江苏大学, 2021: 19-20 Wu M. Neurobehavioral toxicity and related mechanisms of diazepam to zebrafish (Danio rerio) [D]. Zhenjiang: Jiangsu University, 2021: 19 -20 (in Chinese)
Lau B Y, Mathur P, Gould G G, et al. Identification of a brain center whose activity discriminates a choice behavior in zebrafish [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(6): 2581-2586 Sackerman J, Donegan J J, Cunningham C S, et al. Zebrafish behavior in novel environments: Effects of acute exposure to anxiolytic compounds and choice of Danio rerio line [J]. International Journal of Comparative Psychology, 2010, 23(1): 43-61 Miller N, Gerlai R. From schooling to shoaling: Patterns of collective motion in zebrafish (Danio rerio) [J]. PLoS One, 2012, 7(11): e48865 Childs E W, Udobi K F, Wood J G, et al. In vivo visualization of reactive oxidants and leukocyte-endothelial adherence following hemorrhagic shock [J]. Shock, 2002, 18(5): 423-427 Wang L, Ryu B, Kim W S, et al. Protective effect of gallic acid derivatives from the freshwater green alga Spirogyra sp. against ultraviolet B-induced apoptosis through reactive oxygen species clearance in human keratinocytes and zebrafish [J]. Algae, 2017, 32: 379-388 Bai X W, Yan Y S, Canfield S, et al. Ketamine enhances human neural stem cell proliferation and induces neuronal apoptosis via reactive oxygen species-mediated mitochondrial pathway [J]. Anesthesia and Analgesia, 2013, 116(4): 869-880 Zhang Y Y, Dong Y L, Wu X, et al. The mitochondrial pathway of anesthetic isoflurane-induced apoptosis [J]. The Journal of Biological Chemistry, 2010, 285(6): 4025-4037 Wang C, Zhang X, Liu F, et al. Anesthetic-induced oxidative stress and potential protection [J]. The Scientific World Journal, 2010, 10: 1473-1482 Jones D C, Miller G W. The effects of environmental neurotoxicants on the dopaminergic system: A possible role in drug addiction [J]. Biochemical Pharmacology, 2008, 76(5): 569-581 Iversen S D, Iversen L L. Dopamine: 50 years in perspective [J]. Trends in Neurosciences, 2007, 30(5): 188-193 Beaulieu J M, Gainetdinov R R. The physiology, signaling, and pharmacology of dopamine receptors [J]. Pharmacological Reviews, 2011, 63(1): 182-217 Xu M, Koeltzow T E, Santiago G T, et al. Dopamine D3 receptor mutant mice exhibit increased behavioral sensitivity to concurrent stimulation of D1 and D2 receptors [J]. Neuron, 1997, 19(4): 837-848 Liang X F, Zhao Y Q, Liu W, et al. Butylated hydroxytoluene induces hyperactivity and alters dopamine-related gene expression in larval zebrafish (Danio rerio) [J]. Environmental Pollution, 2020, 257: 113624 Steiner H, Fuchs S, Accili D. D3 dopamine receptor-deficient mouse: Evidence for reduced anxiety [J]. Physiology & Behavior, 1997, 63(1): 137-141 Leggio G M, Micale V, Drago F. Increased sensitivity to antidepressants of D3 dopamine receptor-deficient mice in the forced swim test (FST) [J]. European Neuropsychopharmacology, 2008, 18(4): 271-277 Borden L A. GABA transporter heterogeneity: Pharmacology and cellular localization [J]. Neurochemistry International, 1996, 29(4): 335-356 Morara S, Brecha N C, Marcotti W, et al. Neuronal and glial localization of the GABA transporter GAT-1 in the cerebellar cortex [J]. Neuroreport, 1996, 7(18): 2993-2996 Gadea A, López-Colomé A M. Glial transporters for glutamate, glycine and GABA Ⅰ. Glutamate transporters [J]. Journal of Neuroscience Research, 2001, 63(6): 453-460 Ma Y H, Zhou X G, Duan S H, et al. Overexpression of gamma-aminobutyric acid transporter subtype Ⅰ leads to cognitive deterioration in transgenic mice [J]. Acta Pharmacologica Sinica, 2001, 22(4): 340-348 Hu J H, Yang N, Ma Y H, et al. Hyperalgesic effects of gamma-aminobutyric acid transporter Ⅰ in mice [J]. Journal of Neuroscience Research, 2003, 73(4): 565-572 Isomoto S, Kondo C, Takahashi N, et al. A novel ubiquitously distributed isoform of GIRK2 (GIRK2B) enhances GIRK1 expression of the G-protein-gated K+ current in Xenopus oocytes [J]. Biochemical and Biophysical Research Communications, 1996, 218(1): 286-291 Dhein S, van Koppen C J, Brodde O E. Muscarinic receptors in the mammalian heart [J]. Pharmacological Research, 2001, 44(3): 161-182 -

计量
- 文章访问数: 2316
- HTML全文浏览数: 2316
- PDF下载数: 93
- 施引文献: 0