Ke P C, Lin S J, Parak W J, et al. A decade of the protein corona[J]. ACS Nano, 2017, 11(12):11773-11776
|
Vroman L. Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids[J]. Nature, 1962, 196(4853):476-477
|
Weber C, Morsbach S, Landfester K. Possibilities and limitations of different separation techniques for the analysis of the protein corona[J]. Angewandte Chemie, 2019, 58(37):12787-12794
|
Milani S, Bombelli F B, Pitek A S, et al. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles:Soft and hard corona[J]. ACS Nano, 2012, 6(3):2532-2541
|
Lundqvist M, Stigler J, Cedervall T, et al. The evolution of the protein corona around nanoparticles:A test study[J]. ACS Nano, 2011, 5(9):7503-7509
|
Piella J, Bastús N G, Puntes V. Size-dependent protein-nanoparticle interactions in citrate-stabilized gold nanoparticles:The emergence of the protein corona[J]. Bioconjugate Chemistry, 2016, 28(1):88-97
|
Dawson K A, Yan Y. Current understanding of biological identity at the nanoscale and future prospects[J]. Nature Nanotechnology, 2021, 16(3):229-242
|
Wheeler K E, Chetwynd A J, Fahy K M, et al. Environmental dimensions of the protein corona[J]. Nature Nanotechnology, 2021, 16(6):617-629
|
Zheng T Y, Pierre-Pierre N, Yan X, et al. Gold nanoparticle-enabled blood test for early stage cancer detection and risk assessment[J]. ACS Applied Materials & Interfaces, 2015, 7(12):6819-6827
|
Wang C, Chen B B, He M, et al. Composition of intracellular protein corona around nanoparticles during internalization[J]. ACS Nano, 2021, 15(2):3108-3122
|
Weber C, Simon J, Mailänder V, et al. Preservation of the soft protein corona in distinct flow allows identification of weakly bound proteins[J]. Acta Biomaterialia, 2018, 76:217-224
|
Rezaei G, Daghighi S M, Haririan I, et al. Protein corona variation in nanoparticles revisited:A dynamic grouping strategy[J]. Colloids and Surfaces B, Biointerfaces, 2019, 179:505-516
|
Nienhaus K, Wang H, Nienhaus G U. Nanoparticles for biomedical applications:Exploring and exploiting molecular interactions at the nano-bio interface[J]. Materials Today Advances, 2020, 5:100036
|
Walkey C D, Chan W C W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment[J]. Chemical Society Reviews, 2012, 41(7):2780-2799
|
Rodriguez-Quijada C, Sánchez-Purrà M, de Puig H, et al. Physical properties of biomolecules at the nanomaterial interface[J]. The Journal of Physical Chemistry B, 2018, 122(11):2827-2840
|
Deng Z J, Liang M T, Monteiro M, et al. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation[J]. Nature Nanotechnology, 2011, 6(1):39-44
|
Wang M M, Fu C P, Liu X G, et al. Probing the mechanism of plasma protein adsorption on Au and Ag nanoparticles with FT-IR spectroscopy[J]. Nanoscale, 2015, 7(37):15191-15196
|
Mahmoudi M, Shokrgozar M A, Sardari S, et al. Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles[J]. Nanoscale, 2011, 3(3):1127-1138
|
Podila R, Vedantam P, Ke P C, et al. Evidences for charge transfer-induced conformational changes in carbon nanostructure-protein corona[J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2012, 116(41):22098-22103
|
Zhdanov V P. Formation of a protein corona around nanoparticles[J]. Current Opinion in Colloid & Interface Science, 2019, 41:95-103
|
Ge C C, Tian J, Zhao Y L, et al. Towards understanding of nanoparticle-protein corona[J]. Archives of Toxicology, 2015, 89(4):519-539
|
Wang B, Wang Q, Chen H Q, et al. Size-dependent translocation pattern, chemical and biological transformation of nano- and submicron-sized ferric oxide particles in the central nervous system[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(6):5553-5561
|
Cedervall T, Lynch I, Lindman S, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(7):2050-2055
|
Treuel L, Docter D, Maskos M, et al. Protein corona:From molecular adsorption to physiological complexity[J]. Beilstein Journal of Nanotechnology, 2015, 6:857-873
|
Lacerda S H, Park J J, Meuse C, et al. Interaction of gold nanoparticles with common human blood proteins[J]. ACS Nano, 2010, 4(1):365-379
|
Chetwynd A J, Zhang W, Thorn J A, et al. The nanomaterial metabolite corona determined using a quantitative metabolomics approach:A pilot study[J]. Small, 2020, 16(21):e2000295
|
Valenkov A M, Gofman I V, Nosov K S, et al. Polymeric composite systems modified with allotropic forms of carbon (review)[J]. Russian Journal of Applied Chemistry, 2011, 84(5):735-750
|
Xu X Y, He L B, Zhu B G, et al. Advances in polymeric materials for dental applications[J]. Polymer Chemistry, 2017, 8(5):807-823
|
Abstiens K, Maslanka Figueroa S, Gregoritza M, et al. Interaction of functionalized nanoparticles with serum proteins and its impact on colloidal stability and cargo leaching[J]. Soft Matter, 2019, 15(4):709-720
|
Sarai A, Gromiha M M, An J H, et al. Thermodynamic databases for proteins and protein-nucleic acid interactions[J]. Biopolymers, 2001, 61(2):121-126
|
Clemons T D, Evans C W, Zdyrko B, et al. Multifunctional nanoadditives for the thermodynamic and kinetic stabilization of enzymes[J]. Nanoscale, 2011, 3(10):4085-4087
|
Lesniak A, Fenaroli F, Monopoli M P, et al. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells[J]. ACS Nano, 2012, 6(7):5845-5857
|
Dhar S, Sood V, Lohiya G, et al. Role of physicochemical properties of protein in modulating the nanoparticle-bio interface[J]. Journal of Biomedical Nanotechnology, 2020, 16(8):1276-1295
|
del Caño R, Mateus L, Sánchez-Obrero G, et al. Hemoglobin bioconjugates with surface-protected gold nanoparticles in aqueous media:The stability depends on solution pH and protein properties[J]. Journal of Colloid and Interface Science, 2017, 505:1165-1171
|
Mahmoudi M, Shokrgozar M A, Behzadi S. Slight temperature changes affect protein affinity and cellular uptake/toxicity of nanoparticles[J]. Nanoscale, 2013, 5(8):3240-3244
|
Yu K, Andruschak P, Yeh H H, et al. Influence of dynamic flow conditions on adsorbed plasma protein corona and surface-induced thrombus generation on antifouling brushes[J]. Biomaterials, 2018, 166:79-95
|
Lee J G, Lannigan K, Shelton W A, et al. Adsorption of myoglobin and corona formation on silica nanoparticles[J]. Langmuir:The ACS Journal of Surfaces and Colloids, 2020, 36(47):14157-14165
|
Schartl W. Light Scattering from Polymer Solutions and Nanoparticle Dispersions[M]. Berlin, Heidelberg:Springer Berlin Heidelberg, 2007:1-191
|
Nienhaus G U, Maffre P, Nienhaus K. Studying the protein corona on nanoparticles by FCS[J]. Methods in Enzymology, 2013, 519:115-137
|
Shang L, Nienhaus G U. In situ characterization of protein adsorption onto nanoparticles by fluorescence correlation spectroscopy[J]. Accounts of Chemical Research, 2017, 50(2):387-395
|
Murray R A, Escobar A, Bastús N G, et al. Fluorescently labelled nanomaterials in nanosafety research:Practical advice to avoid artefacts and trace unbound dye[J]. NanoImpact, 2018, 9:102-113
|
Pandit S, Kundu S. Fluorescence quenching and related interactions among globular proteins (BSA and lysozyme) in presence of titanium dioxide nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 628:127253
|
Lo Giudice M C, Herda L M, Polo E, et al. In situ characterization of nanoparticle biomolecular interactions in complex biological media by flow cytometry[J]. Nature Communications, 2016, 7:13475
|
Nienhaus K, Nienhaus G U. Brownian motion-based nanoparticle sizing:A powerful approach for in situ analysis of nanoparticle-protein interactions[J]. Biointerphases, 2020, 15(6):061201
|
Carril M, Padro D, del Pino P, et al. In situ detection of the protein corona in complex environments[J]. Nature Communications, 2017, 8(1):1542
|
Padro D, Cienskowski P, Lopez-Fernandez S, et al. Toward diffusion measurements of colloidal nanoparticles in biological environments by nuclear magnetic resonance[J]. Small, 2020, 16(36):e2001160
|
Xu J X, Fitzkee N C. Solution NMR of nanoparticles in serum:Protein competition influences binding thermodynamics and kinetics[J]. Frontiers in Physiology, 2021, 12:715419
|
García-Álvarez R, Vallet-Regí M. Hard and soft protein corona of nanomaterials:Analysis and relevance[J]. Nanomaterials, 2021, 11(4):888
|
Zhang H Y, Peng J X, Li X, et al. A nano-bio interfacial protein corona on silica nanoparticle[J]. Colloids and Surfaces B, Biointerfaces, 2018, 167:220-228
|
Docter D, Distler U, Storck W, et al. Quantitative profiling of the protein coronas that form around nanoparticles[J]. Nature Protocols, 2014, 9(9):2030-2044
|
Zhou M, Tang M, Li S M, et al. Effective lock-in strategy for proteomic analysis of corona complexes bound to amino-free ligands of gold nanoparticles[J]. Nanoscale, 2018, 10(26):12413-12423
|
Ashkarran A A, Dararatana N, Crespy D, et al. Mapping the heterogeneity of protein corona by ex vivo magnetic levitation[J]. Nanoscale, 2020, 12(4):2374-2383
|
Bonvin D, Chiappe D, Moniatte M, et al. Methods of protein corona isolation for magnetic nanoparticles[J]. The Analyst, 2017, 142(20):3805-3815
|
Liu Y T, Li Y, Wei Y. Highly selective isolation and purification of heme proteins in biological samples using multifunctional magnetic nanospheres[J]. Journal of Separation Science, 2014, 37(24):3745-3752
|
Monopoli M P, Wan S, Bombelli F B, et al. Comparisons of nanoparticle protein corona complexes isolated with different methods[J]. Nano Life, 2013, 3(4):1343004
|
Alberg I, Kramer S, Leps C, et al. Effect of core-crosslinking on protein corona formation on polymeric micelles[J]. Macromolecular Bioscience, 2021, 21(4):e2000414
|
Mudalige T K, Qu H O, Linder S W. Asymmetric flow-field flow fractionation hyphenated ICP-MS as an alternative to cloud point extraction for quantification of silver nanoparticles and silver speciation:Application for nanoparticles with a protein corona[J]. Analytical Chemistry, 2015, 87(14):7395-7401
|
Oehlke K, Keppler J K, Milsmann J, et al. Adsorption of β-lactoglobulin to solid lipid nanoparticles (SLN) depends on encapsulated compounds[J]. Journal of Food Engineering, 2019, 247:144-151
|
Roman M, Rigo C, Castillo-Michel H, et al. Hydrodynamic chromatography coupled to single-particle ICP-MS for the simultaneous characterization of AgNPs and determination of dissolved Ag in plasma and blood of burn patients[J]. Analytical and Bioanalytical Chemistry, 2016, 408(19):5109-5124
|
Wohlleben W. Validity range of centrifuges for the regulation of nanomaterials:From classification to as-tested coronas[J]. Journal of Nanoparticle Research:An Interdisciplinary Forum for Nanoscale Science and Technology, 2012, 14(12):1300
|
Hellstrand E, Lynch I, Andersson A, et al. Complete high-density lipoproteins in nanoparticle corona[J]. The FEBS Journal, 2009, 276(12):3372-3381
|
Liu W, Rose J, Plantevin S, et al. Protein corona formation for nanomaterials and proteins of a similar size:Hard or soft corona?[J]. Nanoscale, 2013, 5(4):1658-1668
|
Pérez J, Koutsioubas A. Memprot:A program to model the detergent corona around a membrane protein based on SEC-SAXS data[J]. Acta Crystallographica Section D, Biological Crystallography, 2015, 71(Pt 1):86-93
|
Chetwynd A J, Guggenheim E J, Briffa S M, et al. Current application of capillary electrophoresis in nanomaterial characterisation and its potential to characterise the protein and small molecule corona[J]. Nanomaterials, 2018, 8(2):E99
|
Faserl K, Chetwynd A J, Lynch I, et al. Corona isolation method matters:Capillary electrophoresis mass spectrometry based comparison of protein corona compositions following on-particle versus in-solution or in-gel digestion[J]. Nanomaterials, 2019, 9(6):898
|
Legat J, Matczuk M, Timerbaev A, et al. CE separation and ICP-MS detection of gold nanoparticles and their protein conjugates[J]. Chromatographia, 2017, 80(11):1695-1700
|
Riley K R, Sims C M, Wood I T, et al. Short-chained oligo(ethylene oxide)-functionalized gold nanoparticles:Realization of significant protein resistance[J]. Analytical and Bioanalytical Chemistry, 2018, 410(1):145-154
|
Radauer-Preiml I, Andosch A, Hawranek T, et al. Nanoparticle-allergen interactions mediate human allergic responses:Protein corona characterization and cellular responses[J]. Particle and Fibre Toxicology, 2016, 13:3
|
Yu S M, Laromaine A, Roig A. Enhanced stability of superparamagnetic iron oxide nanoparticles in biological media using a pH adjusted-BSA adsorption protocol[J]. Journal of Nanoparticle Research, 2014, 16(7):1-15
|
Dar A I, Walia S K, Acharya A. Molecular recognition based rapid diagnosis of immunoglobulins via proteomic profiling of protein-nanoparticle complexes[J]. International Journal of Biological Macromolecules, 2019, 138:156-167
|
Mbeh D A, Javanbakht T, Tabet L, et al. Protein corona formation on magnetite nanoparticles:Effects of culture medium composition, and its consequences on superparamagnetic nanoparticle cytotoxicity[J]. Journal of Biomedical Nanotechnology, 2015, 11(5):828-840
|
Nooney R I, White A, O'Mahony C, et al. Investigating the colloidal stability of fluorescent silica nanoparticles under isotonic conditions for biomedical applications[J]. Journal of Colloid and Interface Science, 2015, 456:50-58
|
Zhang T, Tang M, Yao Y, et al. MWCNT interactions with protein:Surface-induced changes in protein adsorption and the impact of protein corona on cellular uptake and cytotoxicity[J]. International Journal of Nanomedicine, 2019, 14:993-1009
|
Zou Y J, Ito S, Yoshino F, et al. Polyglycerol grafting shields nanoparticles from protein corona formation to avoid macrophage uptake[J]. ACS Nano, 2020, 14(6):7216-7226
|
Ashkarran A A, Ghavami M, Aghaverdi H, et al. Bacterial effects and protein corona evaluations:Crucial ignored factors in the prediction of bio-efficacy of various forms of silver nanoparticles[J]. Chemical Research in Toxicology, 2012, 25(6):1231-1242
|
Walkey C D, Olsen J B, Guo H B, et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake[J]. Journal of the American Chemical Society, 2012, 134(4):2139-2147
|
Pinals R L, Yang D, Lui A, et al. Corona exchange dynamics on carbon nanotubes by multiplexed fluorescence monitoring[J]. Journal of the American Chemical Society, 2020, 142(3):1254-1264
|
Zhao Z S, Li G L, Liu Q S, et al. Identification and interaction mechanism of protein corona on silver nanoparticles with different sizes and the cellular responses[J]. Journal of Hazardous Materials, 2021, 414:125582
|
Clemments A M, Botella P, Landry C C. Protein adsorption from biofluids on silica nanoparticles:Corona analysis as a function of particle diameter and porosity[J]. ACS Applied Materials & Interfaces, 2015, 7(39):21682-21689
|
Mohammad-Beigi H, Hayashi Y, Zeuthen C M, et al. Mapping and identification of soft corona proteins at nanoparticles and their impact on cellular association[J]. Nature Communications, 2020, 11(1):4535
|
Partikel K, Korte R, Stein N C, et al. Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 141:70-80
|
Chetwynd A J, Wheeler K E, Lynch I. Best practice in reporting corona studies:Minimum information about Nanomaterial Biocorona Experiments (MINBE)[J]. Nano Today, 2019, 28:100758
|
Capomaccio R, Ojea Jimenez I, Colpo P, et al. Determination of the structure and morphology of gold nanoparticle-HSA protein complexes[J]. Nanoscale, 2015, 7(42):17653-17657
|
Szekeres G P, Montes-Bayón M, Bettmer J, et al. Fragmentation of proteins in the corona of gold nanoparticles as observed in live cell surface-enhanced Raman scattering[J]. Analytical Chemistry, 2020, 92(12):8553-8560
|
Natte K, Friedrich J F, Wohlrab S, et al. Impact of polymer shell on the formation and time evolution of nanoparticle-protein corona[J]. Colloids and Surfaces B:Biointerfaces, 2013, 104:213-220
|
Yang H Y, Wang M, Zhang Y M, et al. Detailed insight into the formation of protein corona:Conformational change, stability and aggregation[J]. International Journal of Biological Macromolecules, 2019, 135:1114-1122
|
Jimenez M S, Luque-Alled J M, Gomez T, et al. Evaluation of agarose gel electrophoresis for characterization of silver nanoparticles in industrial products[J]. Electrophoresis, 2016, 37(10):1376-1383
|
Davidson A M, Brust M, Cooper D L, et al. Sensitive analysis of protein adsorption to colloidal gold by differential centrifugal sedimentation[J]. Analytical Chemistry, 2017, 89(12):6807-6814
|
Wang R M, Chen L, Li D X, et al. Concurrent detection of protein adsorption on mixed nanoparticles by differential centrifugal sedimentation[J]. Particle & Particle Systems Characterization, 2017, 34(12):1700134
|
Polo E, Araban V, Pelaz B, et al. Photothermal effects on protein adsorption dynamics of PEGylated gold nanorods[J]. Applied Materials Today, 2019, 15:599-604
|
Blundell E L C J, Healey M J, Holton E, et al. Characterisation of the protein corona using tunable resistive pulse sensing:Determining the change and distribution of a particle's surface charge[J]. Analytical and Bioanalytical Chemistry, 2016, 408(21):5757-5768
|
Sikora A, Shard A, Minelli C. Size and ζ-potential measurement of silica nanoparticles in serum using tunable resistive pulse sensing[J]. Langmuir, 2016, 32(9):2216-2224
|
Barbir R, Pem B, Kalćec N, et al. Application of localized surface plasmon resonance spectroscopy to investigate a nano-bio interface[J]. Langmuir:The ACS Journal of Surfaces and Colloids, 2021, 37(5):1991-2000
|
Ren X, Li M, Chen M, et al. Characterization of protein-conjugating kinetics based on localized surface plasmon resonance of the gold nanoparticle[J]. Spectroscopy Letters, 2016, 49(6):434-443
|
Flores C Y, Luis J Mendoza H, Achilli E, et al. Plasmon properties of multilayer albumin/gold hybrid nanoparticles[J]. Materials Research Express, 2019, 6(5):055005
|
Patra A, Ding T, Engudar G, et al. Component-specific analysis of plasma protein corona formation on gold nanoparticles using multiplexed surface plasmon resonance[J]. Small, 2016, 12(9):1174-1182
|
Pilkington E H, Gustafsson O J R, Xing Y T, et al. Profiling the serum protein corona of fibrillar human islet amyloid polypeptide[J]. ACS Nano, 2018, 12(6):6066-6078
|
Liu S Y, Horak J, Höldrich M, et al. Accurate and reliable quantification of the protein surface coverage on protein-functionalized nanoparticles[J]. Analytica Chimica Acta, 2017, 989:29-37
|
Prozeller D, Morsbach S, Landfester K. Isothermal titration calorimetry as a complementary method for investigating nanoparticle-protein interactions[J]. Nanoscale, 2019, 11(41):19265-19273
|
Nicoletti M, Gambarotti C, Fasoli E. Proteomic fingerprinting of protein corona formed on PEGylated multi-walled carbon nanotubes[J]. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 2021, 1163:122504
|
Nicoletti M, Gambarotti C, Fasoli E. Proteomic exploration of soft and hard biocorona onto PEGylated multiwalled carbon nanotubes[J]. Biotechnology and Applied Biochemistry, 2021, 68(5):1003-1013
|
Miotto G, Magro M, Terzo M, et al. Protein corona as a proteome fingerprint:The example of hidden biomarkers for cow mastitis[J]. Colloids and Surfaces B, Biointerfaces, 2016, 140:40-49
|
Ren J Y, Cai R, Wang J, et al. Precision nanomedicine development based on specific opsonization of human cancer patient-personalized protein coronas[J]. Nano Letters, 2019, 19(7):4692-4701
|
Hu W Y, Xia L, Hu Y F, et al. Recent progress on three-dimensional substrates for surface-enhanced Raman spectroscopic analysis[J]. Microchemical Journal, 2022, 172:106908
|
Nirala N R, Asiku J, Dvir H, et al. N-acetyl-β-d-glucosaminidase activity assay for monitoring insulin-dependent diabetes using Ag-porous Si SERS platform[J]. Talanta, 2022, 239:123087
|
Blanco E, Shen H F, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery[J]. Nature Biotechnology, 2015, 33(9):941-951
|
Xu L N, Xu M, Wang R X, et al. The crucial role of environmental coronas in determining the biological effects of engineered nanomaterials[J]. Small, 2020, 16(36):e2003691
|
Hu W B, Peng C, Lv M, et al. Protein corona-mediated mitigation of cytotoxicity of graphene oxide[J]. ACS Nano, 2011, 5(5):3693-3700
|
Duan G X, Kang S G, Tian X, et al. Protein corona mitigates the cytotoxicity of graphene oxide by reducing its physical interaction with cell membrane[J]. Nanoscale, 2015, 7(37):15214-15224
|
Liu R G, Liu K J, Cui G X, et al. Change of cell toxicity of food-borne nanoparticles after forming protein coronas with human serum albumin[J]. Journal of Agricultural and Food Chemistry, 2022, 70(4):1261-1271
|
Barbalinardo M, Caicci F, Cavallini M, et al. Protein corona mediated uptake and cytotoxicity of silver nanoparticles in mouse embryonic fibroblast[J]. Small, 2018, 14(34):e1801219
|
Czarnecka J, Wiśniewski M, Forbot N, et al. Cytotoxic or not? Disclosing the toxic nature of carbonaceous nanomaterials through nano-bio interactions[J]. Materials, 2020, 13(9):2060
|
Liu Z Y, Zhan X H, Yang M G, et al. A magnetic-dependent protein corona of tailor-made superparamagnetic iron oxides alters their biological behaviors[J]. Nanoscale, 2016, 8(14):7544-7555
|
Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles[J]. Small, 2008, 4(1):26-49
|
Monteiro-Riviere N A, Samberg M E, Oldenburg S J, et al. Protein binding modulates the cellular uptake of silver nanoparticles into human cells:Implications for in vitro to in vivo extrapolations?[J]. Toxicology Letters, 2013, 220(3):286-293
|
Chen F F, Wang G K, Griffin J I, et al. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo[J]. Nature Nanotechnology, 2017, 12(4):387-393
|
Seneca S, Simon J, Weber C, et al. How low can You go? Low densities of poly(ethylene glycol) surfactants attract stealth proteins[J]. Macromolecular Bioscience, 2018, 18(9):1800075
|
Wang M Y, Gustafsson O J R, Siddiqui G, et al. Human plasma proteome association and cytotoxicity of nano-graphene oxide grafted with stealth polyethylene glycol and poly(2-ethyl-2-oxazoline)[J]. Nanoscale, 2018, 10(23):10863-10875
|
Bao J W, Zhang Q Q, Duan T J, et al. The fate of nanoparticles in vivo and the strategy of designing stealth nanoparticle for drug delivery[J]. Current Drug Targets, 2021, 22(8):922-946
|