蛋白冠的形成、分析及生物效应研究进展

汤杰, 张相, 朱娜丽, 李灵香玉, 王亚韡. 蛋白冠的形成、分析及生物效应研究进展[J]. 生态毒理学报, 2022, 17(3): 95-110. doi: 10.7524/AJE.1673-5897.20220206001
引用本文: 汤杰, 张相, 朱娜丽, 李灵香玉, 王亚韡. 蛋白冠的形成、分析及生物效应研究进展[J]. 生态毒理学报, 2022, 17(3): 95-110. doi: 10.7524/AJE.1673-5897.20220206001
Tang Jie, Zhang Xiang, Zhu Nali, Li Lingxiangyu, Wang Yawei. Review on Formation, Analysis and Bioeffect of Protein Corona[J]. Asian journal of ecotoxicology, 2022, 17(3): 95-110. doi: 10.7524/AJE.1673-5897.20220206001
Citation: Tang Jie, Zhang Xiang, Zhu Nali, Li Lingxiangyu, Wang Yawei. Review on Formation, Analysis and Bioeffect of Protein Corona[J]. Asian journal of ecotoxicology, 2022, 17(3): 95-110. doi: 10.7524/AJE.1673-5897.20220206001

蛋白冠的形成、分析及生物效应研究进展

    作者简介: 汤杰(1998—),男,硕士研究生,研究方向为纳米生物界面,E-mail:tangjie201@mails.ucas.ac.cn
    通讯作者: 李灵香玉, E-mail: lingxiangyu.li@ucas.ac.cn
  • 基金项目:

    国家自然科学基金面上项目(21976163);国家自然科学基金创新研究群体基金项目(22021003)

  • 中图分类号: X171.5

Review on Formation, Analysis and Bioeffect of Protein Corona

    Corresponding author: Li Lingxiangyu, lingxiangyu.li@ucas.ac.cn
  • Fund Project:
  • 摘要: 纳米颗粒被生物体摄入到体内后不可避免地会与蛋白质相互作用形成蛋白冠。根据蛋白质与纳米颗粒表面的亲和程度与相互作用方式,蛋白冠通常被分为软蛋白冠和硬蛋白冠。蛋白冠的形成使得纳米颗粒具有新的生物学特征,进而影响纳米颗粒在生物体或环境体系中的吸收/吸附、分布、转化与归趋。蛋白冠的结构与组成主要受纳米颗粒、蛋白质和介质条件等因素的影响,其在纳米颗粒的细胞摄入和生物分布过程中发挥着重要作用,能够影响纳米颗粒的生物效应。本文重点对蛋白冠的形成与影响因素、蛋白冠的表征分析方法和蛋白冠对纳米颗粒生物效应的影响3个方面进行了归纳总结,并展望了潜在的重点研究方向,以期为蛋白冠的应用和风险评估提供一定的参考。
  • 加载中
  • Ke P C, Lin S J, Parak W J, et al. A decade of the protein corona[J]. ACS Nano, 2017, 11(12):11773-11776
    Vroman L. Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids[J]. Nature, 1962, 196(4853):476-477
    Weber C, Morsbach S, Landfester K. Possibilities and limitations of different separation techniques for the analysis of the protein corona[J]. Angewandte Chemie, 2019, 58(37):12787-12794
    Milani S, Bombelli F B, Pitek A S, et al. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles:Soft and hard corona[J]. ACS Nano, 2012, 6(3):2532-2541
    Lundqvist M, Stigler J, Cedervall T, et al. The evolution of the protein corona around nanoparticles:A test study[J]. ACS Nano, 2011, 5(9):7503-7509
    Piella J, Bastús N G, Puntes V. Size-dependent protein-nanoparticle interactions in citrate-stabilized gold nanoparticles:The emergence of the protein corona[J]. Bioconjugate Chemistry, 2016, 28(1):88-97
    Dawson K A, Yan Y. Current understanding of biological identity at the nanoscale and future prospects[J]. Nature Nanotechnology, 2021, 16(3):229-242
    Wheeler K E, Chetwynd A J, Fahy K M, et al. Environmental dimensions of the protein corona[J]. Nature Nanotechnology, 2021, 16(6):617-629
    Zheng T Y, Pierre-Pierre N, Yan X, et al. Gold nanoparticle-enabled blood test for early stage cancer detection and risk assessment[J]. ACS Applied Materials & Interfaces, 2015, 7(12):6819-6827
    Wang C, Chen B B, He M, et al. Composition of intracellular protein corona around nanoparticles during internalization[J]. ACS Nano, 2021, 15(2):3108-3122
    Weber C, Simon J, Mailänder V, et al. Preservation of the soft protein corona in distinct flow allows identification of weakly bound proteins[J]. Acta Biomaterialia, 2018, 76:217-224
    Rezaei G, Daghighi S M, Haririan I, et al. Protein corona variation in nanoparticles revisited:A dynamic grouping strategy[J]. Colloids and Surfaces B, Biointerfaces, 2019, 179:505-516
    Nienhaus K, Wang H, Nienhaus G U. Nanoparticles for biomedical applications:Exploring and exploiting molecular interactions at the nano-bio interface[J]. Materials Today Advances, 2020, 5:100036
    Walkey C D, Chan W C W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment[J]. Chemical Society Reviews, 2012, 41(7):2780-2799
    Rodriguez-Quijada C, Sánchez-Purrà M, de Puig H, et al. Physical properties of biomolecules at the nanomaterial interface[J]. The Journal of Physical Chemistry B, 2018, 122(11):2827-2840
    Deng Z J, Liang M T, Monteiro M, et al. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation[J]. Nature Nanotechnology, 2011, 6(1):39-44
    Wang M M, Fu C P, Liu X G, et al. Probing the mechanism of plasma protein adsorption on Au and Ag nanoparticles with FT-IR spectroscopy[J]. Nanoscale, 2015, 7(37):15191-15196
    Mahmoudi M, Shokrgozar M A, Sardari S, et al. Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles[J]. Nanoscale, 2011, 3(3):1127-1138
    Podila R, Vedantam P, Ke P C, et al. Evidences for charge transfer-induced conformational changes in carbon nanostructure-protein corona[J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2012, 116(41):22098-22103
    Zhdanov V P. Formation of a protein corona around nanoparticles[J]. Current Opinion in Colloid & Interface Science, 2019, 41:95-103
    Ge C C, Tian J, Zhao Y L, et al. Towards understanding of nanoparticle-protein corona[J]. Archives of Toxicology, 2015, 89(4):519-539
    Wang B, Wang Q, Chen H Q, et al. Size-dependent translocation pattern, chemical and biological transformation of nano- and submicron-sized ferric oxide particles in the central nervous system[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(6):5553-5561
    Cedervall T, Lynch I, Lindman S, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(7):2050-2055
    Treuel L, Docter D, Maskos M, et al. Protein corona:From molecular adsorption to physiological complexity[J]. Beilstein Journal of Nanotechnology, 2015, 6:857-873
    Lacerda S H, Park J J, Meuse C, et al. Interaction of gold nanoparticles with common human blood proteins[J]. ACS Nano, 2010, 4(1):365-379
    Chetwynd A J, Zhang W, Thorn J A, et al. The nanomaterial metabolite corona determined using a quantitative metabolomics approach:A pilot study[J]. Small, 2020, 16(21):e2000295
    Valenkov A M, Gofman I V, Nosov K S, et al. Polymeric composite systems modified with allotropic forms of carbon (review)[J]. Russian Journal of Applied Chemistry, 2011, 84(5):735-750
    Xu X Y, He L B, Zhu B G, et al. Advances in polymeric materials for dental applications[J]. Polymer Chemistry, 2017, 8(5):807-823
    Abstiens K, Maslanka Figueroa S, Gregoritza M, et al. Interaction of functionalized nanoparticles with serum proteins and its impact on colloidal stability and cargo leaching[J]. Soft Matter, 2019, 15(4):709-720
    Sarai A, Gromiha M M, An J H, et al. Thermodynamic databases for proteins and protein-nucleic acid interactions[J]. Biopolymers, 2001, 61(2):121-126
    Clemons T D, Evans C W, Zdyrko B, et al. Multifunctional nanoadditives for the thermodynamic and kinetic stabilization of enzymes[J]. Nanoscale, 2011, 3(10):4085-4087
    Lesniak A, Fenaroli F, Monopoli M P, et al. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells[J]. ACS Nano, 2012, 6(7):5845-5857
    Dhar S, Sood V, Lohiya G, et al. Role of physicochemical properties of protein in modulating the nanoparticle-bio interface[J]. Journal of Biomedical Nanotechnology, 2020, 16(8):1276-1295
    del Caño R, Mateus L, Sánchez-Obrero G, et al. Hemoglobin bioconjugates with surface-protected gold nanoparticles in aqueous media:The stability depends on solution pH and protein properties[J]. Journal of Colloid and Interface Science, 2017, 505:1165-1171
    Mahmoudi M, Shokrgozar M A, Behzadi S. Slight temperature changes affect protein affinity and cellular uptake/toxicity of nanoparticles[J]. Nanoscale, 2013, 5(8):3240-3244
    Yu K, Andruschak P, Yeh H H, et al. Influence of dynamic flow conditions on adsorbed plasma protein corona and surface-induced thrombus generation on antifouling brushes[J]. Biomaterials, 2018, 166:79-95
    Lee J G, Lannigan K, Shelton W A, et al. Adsorption of myoglobin and corona formation on silica nanoparticles[J]. Langmuir:The ACS Journal of Surfaces and Colloids, 2020, 36(47):14157-14165
    Schartl W. Light Scattering from Polymer Solutions and Nanoparticle Dispersions[M]. Berlin, Heidelberg:Springer Berlin Heidelberg, 2007:1-191
    Nienhaus G U, Maffre P, Nienhaus K. Studying the protein corona on nanoparticles by FCS[J]. Methods in Enzymology, 2013, 519:115-137
    Shang L, Nienhaus G U. In situ characterization of protein adsorption onto nanoparticles by fluorescence correlation spectroscopy[J]. Accounts of Chemical Research, 2017, 50(2):387-395
    Murray R A, Escobar A, Bastús N G, et al. Fluorescently labelled nanomaterials in nanosafety research:Practical advice to avoid artefacts and trace unbound dye[J]. NanoImpact, 2018, 9:102-113
    Pandit S, Kundu S. Fluorescence quenching and related interactions among globular proteins (BSA and lysozyme) in presence of titanium dioxide nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 628:127253
    Lo Giudice M C, Herda L M, Polo E, et al. In situ characterization of nanoparticle biomolecular interactions in complex biological media by flow cytometry[J]. Nature Communications, 2016, 7:13475
    Nienhaus K, Nienhaus G U. Brownian motion-based nanoparticle sizing:A powerful approach for in situ analysis of nanoparticle-protein interactions[J]. Biointerphases, 2020, 15(6):061201
    Carril M, Padro D, del Pino P, et al. In situ detection of the protein corona in complex environments[J]. Nature Communications, 2017, 8(1):1542
    Padro D, Cienskowski P, Lopez-Fernandez S, et al. Toward diffusion measurements of colloidal nanoparticles in biological environments by nuclear magnetic resonance[J]. Small, 2020, 16(36):e2001160
    Xu J X, Fitzkee N C. Solution NMR of nanoparticles in serum:Protein competition influences binding thermodynamics and kinetics[J]. Frontiers in Physiology, 2021, 12:715419
    García-Álvarez R, Vallet-Regí M. Hard and soft protein corona of nanomaterials:Analysis and relevance[J]. Nanomaterials, 2021, 11(4):888
    Zhang H Y, Peng J X, Li X, et al. A nano-bio interfacial protein corona on silica nanoparticle[J]. Colloids and Surfaces B, Biointerfaces, 2018, 167:220-228
    Docter D, Distler U, Storck W, et al. Quantitative profiling of the protein coronas that form around nanoparticles[J]. Nature Protocols, 2014, 9(9):2030-2044
    Zhou M, Tang M, Li S M, et al. Effective lock-in strategy for proteomic analysis of corona complexes bound to amino-free ligands of gold nanoparticles[J]. Nanoscale, 2018, 10(26):12413-12423
    Ashkarran A A, Dararatana N, Crespy D, et al. Mapping the heterogeneity of protein corona by ex vivo magnetic levitation[J]. Nanoscale, 2020, 12(4):2374-2383
    Bonvin D, Chiappe D, Moniatte M, et al. Methods of protein corona isolation for magnetic nanoparticles[J]. The Analyst, 2017, 142(20):3805-3815
    Liu Y T, Li Y, Wei Y. Highly selective isolation and purification of heme proteins in biological samples using multifunctional magnetic nanospheres[J]. Journal of Separation Science, 2014, 37(24):3745-3752
    Monopoli M P, Wan S, Bombelli F B, et al. Comparisons of nanoparticle protein corona complexes isolated with different methods[J]. Nano Life, 2013, 3(4):1343004
    Alberg I, Kramer S, Leps C, et al. Effect of core-crosslinking on protein corona formation on polymeric micelles[J]. Macromolecular Bioscience, 2021, 21(4):e2000414
    Mudalige T K, Qu H O, Linder S W. Asymmetric flow-field flow fractionation hyphenated ICP-MS as an alternative to cloud point extraction for quantification of silver nanoparticles and silver speciation:Application for nanoparticles with a protein corona[J]. Analytical Chemistry, 2015, 87(14):7395-7401
    Oehlke K, Keppler J K, Milsmann J, et al. Adsorption of β-lactoglobulin to solid lipid nanoparticles (SLN) depends on encapsulated compounds[J]. Journal of Food Engineering, 2019, 247:144-151
    Roman M, Rigo C, Castillo-Michel H, et al. Hydrodynamic chromatography coupled to single-particle ICP-MS for the simultaneous characterization of AgNPs and determination of dissolved Ag in plasma and blood of burn patients[J]. Analytical and Bioanalytical Chemistry, 2016, 408(19):5109-5124
    Wohlleben W. Validity range of centrifuges for the regulation of nanomaterials:From classification to as-tested coronas[J]. Journal of Nanoparticle Research:An Interdisciplinary Forum for Nanoscale Science and Technology, 2012, 14(12):1300
    Hellstrand E, Lynch I, Andersson A, et al. Complete high-density lipoproteins in nanoparticle corona[J]. The FEBS Journal, 2009, 276(12):3372-3381
    Liu W, Rose J, Plantevin S, et al. Protein corona formation for nanomaterials and proteins of a similar size:Hard or soft corona?[J]. Nanoscale, 2013, 5(4):1658-1668
    Pérez J, Koutsioubas A. Memprot:A program to model the detergent corona around a membrane protein based on SEC-SAXS data[J]. Acta Crystallographica Section D, Biological Crystallography, 2015, 71(Pt 1):86-93
    Chetwynd A J, Guggenheim E J, Briffa S M, et al. Current application of capillary electrophoresis in nanomaterial characterisation and its potential to characterise the protein and small molecule corona[J]. Nanomaterials, 2018, 8(2):E99
    Faserl K, Chetwynd A J, Lynch I, et al. Corona isolation method matters:Capillary electrophoresis mass spectrometry based comparison of protein corona compositions following on-particle versus in-solution or in-gel digestion[J]. Nanomaterials, 2019, 9(6):898
    Legat J, Matczuk M, Timerbaev A, et al. CE separation and ICP-MS detection of gold nanoparticles and their protein conjugates[J]. Chromatographia, 2017, 80(11):1695-1700
    Riley K R, Sims C M, Wood I T, et al. Short-chained oligo(ethylene oxide)-functionalized gold nanoparticles:Realization of significant protein resistance[J]. Analytical and Bioanalytical Chemistry, 2018, 410(1):145-154
    Radauer-Preiml I, Andosch A, Hawranek T, et al. Nanoparticle-allergen interactions mediate human allergic responses:Protein corona characterization and cellular responses[J]. Particle and Fibre Toxicology, 2016, 13:3
    Yu S M, Laromaine A, Roig A. Enhanced stability of superparamagnetic iron oxide nanoparticles in biological media using a pH adjusted-BSA adsorption protocol[J]. Journal of Nanoparticle Research, 2014, 16(7):1-15
    Dar A I, Walia S K, Acharya A. Molecular recognition based rapid diagnosis of immunoglobulins via proteomic profiling of protein-nanoparticle complexes[J]. International Journal of Biological Macromolecules, 2019, 138:156-167
    Mbeh D A, Javanbakht T, Tabet L, et al. Protein corona formation on magnetite nanoparticles:Effects of culture medium composition, and its consequences on superparamagnetic nanoparticle cytotoxicity[J]. Journal of Biomedical Nanotechnology, 2015, 11(5):828-840
    Nooney R I, White A, O'Mahony C, et al. Investigating the colloidal stability of fluorescent silica nanoparticles under isotonic conditions for biomedical applications[J]. Journal of Colloid and Interface Science, 2015, 456:50-58
    Zhang T, Tang M, Yao Y, et al. MWCNT interactions with protein:Surface-induced changes in protein adsorption and the impact of protein corona on cellular uptake and cytotoxicity[J]. International Journal of Nanomedicine, 2019, 14:993-1009
    Zou Y J, Ito S, Yoshino F, et al. Polyglycerol grafting shields nanoparticles from protein corona formation to avoid macrophage uptake[J]. ACS Nano, 2020, 14(6):7216-7226
    Ashkarran A A, Ghavami M, Aghaverdi H, et al. Bacterial effects and protein corona evaluations:Crucial ignored factors in the prediction of bio-efficacy of various forms of silver nanoparticles[J]. Chemical Research in Toxicology, 2012, 25(6):1231-1242
    Walkey C D, Olsen J B, Guo H B, et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake[J]. Journal of the American Chemical Society, 2012, 134(4):2139-2147
    Pinals R L, Yang D, Lui A, et al. Corona exchange dynamics on carbon nanotubes by multiplexed fluorescence monitoring[J]. Journal of the American Chemical Society, 2020, 142(3):1254-1264
    Zhao Z S, Li G L, Liu Q S, et al. Identification and interaction mechanism of protein corona on silver nanoparticles with different sizes and the cellular responses[J]. Journal of Hazardous Materials, 2021, 414:125582
    Clemments A M, Botella P, Landry C C. Protein adsorption from biofluids on silica nanoparticles:Corona analysis as a function of particle diameter and porosity[J]. ACS Applied Materials & Interfaces, 2015, 7(39):21682-21689
    Mohammad-Beigi H, Hayashi Y, Zeuthen C M, et al. Mapping and identification of soft corona proteins at nanoparticles and their impact on cellular association[J]. Nature Communications, 2020, 11(1):4535
    Partikel K, Korte R, Stein N C, et al. Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 141:70-80
    Chetwynd A J, Wheeler K E, Lynch I. Best practice in reporting corona studies:Minimum information about Nanomaterial Biocorona Experiments (MINBE)[J]. Nano Today, 2019, 28:100758
    Capomaccio R, Ojea Jimenez I, Colpo P, et al. Determination of the structure and morphology of gold nanoparticle-HSA protein complexes[J]. Nanoscale, 2015, 7(42):17653-17657
    Szekeres G P, Montes-Bayón M, Bettmer J, et al. Fragmentation of proteins in the corona of gold nanoparticles as observed in live cell surface-enhanced Raman scattering[J]. Analytical Chemistry, 2020, 92(12):8553-8560
    Natte K, Friedrich J F, Wohlrab S, et al. Impact of polymer shell on the formation and time evolution of nanoparticle-protein corona[J]. Colloids and Surfaces B:Biointerfaces, 2013, 104:213-220
    Yang H Y, Wang M, Zhang Y M, et al. Detailed insight into the formation of protein corona:Conformational change, stability and aggregation[J]. International Journal of Biological Macromolecules, 2019, 135:1114-1122
    Jimenez M S, Luque-Alled J M, Gomez T, et al. Evaluation of agarose gel electrophoresis for characterization of silver nanoparticles in industrial products[J]. Electrophoresis, 2016, 37(10):1376-1383
    Davidson A M, Brust M, Cooper D L, et al. Sensitive analysis of protein adsorption to colloidal gold by differential centrifugal sedimentation[J]. Analytical Chemistry, 2017, 89(12):6807-6814
    Wang R M, Chen L, Li D X, et al. Concurrent detection of protein adsorption on mixed nanoparticles by differential centrifugal sedimentation[J]. Particle & Particle Systems Characterization, 2017, 34(12):1700134
    Polo E, Araban V, Pelaz B, et al. Photothermal effects on protein adsorption dynamics of PEGylated gold nanorods[J]. Applied Materials Today, 2019, 15:599-604
    Blundell E L C J, Healey M J, Holton E, et al. Characterisation of the protein corona using tunable resistive pulse sensing:Determining the change and distribution of a particle's surface charge[J]. Analytical and Bioanalytical Chemistry, 2016, 408(21):5757-5768
    Sikora A, Shard A, Minelli C. Size and ζ-potential measurement of silica nanoparticles in serum using tunable resistive pulse sensing[J]. Langmuir, 2016, 32(9):2216-2224
    Barbir R, Pem B, Kalćec N, et al. Application of localized surface plasmon resonance spectroscopy to investigate a nano-bio interface[J]. Langmuir:The ACS Journal of Surfaces and Colloids, 2021, 37(5):1991-2000
    Ren X, Li M, Chen M, et al. Characterization of protein-conjugating kinetics based on localized surface plasmon resonance of the gold nanoparticle[J]. Spectroscopy Letters, 2016, 49(6):434-443
    Flores C Y, Luis J Mendoza H, Achilli E, et al. Plasmon properties of multilayer albumin/gold hybrid nanoparticles[J]. Materials Research Express, 2019, 6(5):055005
    Patra A, Ding T, Engudar G, et al. Component-specific analysis of plasma protein corona formation on gold nanoparticles using multiplexed surface plasmon resonance[J]. Small, 2016, 12(9):1174-1182
    Pilkington E H, Gustafsson O J R, Xing Y T, et al. Profiling the serum protein corona of fibrillar human islet amyloid polypeptide[J]. ACS Nano, 2018, 12(6):6066-6078
    Liu S Y, Horak J, Höldrich M, et al. Accurate and reliable quantification of the protein surface coverage on protein-functionalized nanoparticles[J]. Analytica Chimica Acta, 2017, 989:29-37
    Prozeller D, Morsbach S, Landfester K. Isothermal titration calorimetry as a complementary method for investigating nanoparticle-protein interactions[J]. Nanoscale, 2019, 11(41):19265-19273
    Nicoletti M, Gambarotti C, Fasoli E. Proteomic fingerprinting of protein corona formed on PEGylated multi-walled carbon nanotubes[J]. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 2021, 1163:122504
    Nicoletti M, Gambarotti C, Fasoli E. Proteomic exploration of soft and hard biocorona onto PEGylated multiwalled carbon nanotubes[J]. Biotechnology and Applied Biochemistry, 2021, 68(5):1003-1013
    Miotto G, Magro M, Terzo M, et al. Protein corona as a proteome fingerprint:The example of hidden biomarkers for cow mastitis[J]. Colloids and Surfaces B, Biointerfaces, 2016, 140:40-49
    Ren J Y, Cai R, Wang J, et al. Precision nanomedicine development based on specific opsonization of human cancer patient-personalized protein coronas[J]. Nano Letters, 2019, 19(7):4692-4701
    Hu W Y, Xia L, Hu Y F, et al. Recent progress on three-dimensional substrates for surface-enhanced Raman spectroscopic analysis[J]. Microchemical Journal, 2022, 172:106908
    Nirala N R, Asiku J, Dvir H, et al. N-acetyl-β-d-glucosaminidase activity assay for monitoring insulin-dependent diabetes using Ag-porous Si SERS platform[J]. Talanta, 2022, 239:123087
    Blanco E, Shen H F, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery[J]. Nature Biotechnology, 2015, 33(9):941-951
    Xu L N, Xu M, Wang R X, et al. The crucial role of environmental coronas in determining the biological effects of engineered nanomaterials[J]. Small, 2020, 16(36):e2003691
    Hu W B, Peng C, Lv M, et al. Protein corona-mediated mitigation of cytotoxicity of graphene oxide[J]. ACS Nano, 2011, 5(5):3693-3700
    Duan G X, Kang S G, Tian X, et al. Protein corona mitigates the cytotoxicity of graphene oxide by reducing its physical interaction with cell membrane[J]. Nanoscale, 2015, 7(37):15214-15224
    Liu R G, Liu K J, Cui G X, et al. Change of cell toxicity of food-borne nanoparticles after forming protein coronas with human serum albumin[J]. Journal of Agricultural and Food Chemistry, 2022, 70(4):1261-1271
    Barbalinardo M, Caicci F, Cavallini M, et al. Protein corona mediated uptake and cytotoxicity of silver nanoparticles in mouse embryonic fibroblast[J]. Small, 2018, 14(34):e1801219
    Czarnecka J, Wiśniewski M, Forbot N, et al. Cytotoxic or not? Disclosing the toxic nature of carbonaceous nanomaterials through nano-bio interactions[J]. Materials, 2020, 13(9):2060
    Liu Z Y, Zhan X H, Yang M G, et al. A magnetic-dependent protein corona of tailor-made superparamagnetic iron oxides alters their biological behaviors[J]. Nanoscale, 2016, 8(14):7544-7555
    Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles[J]. Small, 2008, 4(1):26-49
    Monteiro-Riviere N A, Samberg M E, Oldenburg S J, et al. Protein binding modulates the cellular uptake of silver nanoparticles into human cells:Implications for in vitro to in vivo extrapolations?[J]. Toxicology Letters, 2013, 220(3):286-293
    Chen F F, Wang G K, Griffin J I, et al. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo[J]. Nature Nanotechnology, 2017, 12(4):387-393
    Seneca S, Simon J, Weber C, et al. How low can You go? Low densities of poly(ethylene glycol) surfactants attract stealth proteins[J]. Macromolecular Bioscience, 2018, 18(9):1800075
    Wang M Y, Gustafsson O J R, Siddiqui G, et al. Human plasma proteome association and cytotoxicity of nano-graphene oxide grafted with stealth polyethylene glycol and poly(2-ethyl-2-oxazoline)[J]. Nanoscale, 2018, 10(23):10863-10875
    Bao J W, Zhang Q Q, Duan T J, et al. The fate of nanoparticles in vivo and the strategy of designing stealth nanoparticle for drug delivery[J]. Current Drug Targets, 2021, 22(8):922-946
  • 加载中
计量
  • 文章访问数:  4775
  • HTML全文浏览数:  4775
  • PDF下载数:  239
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-02-06
汤杰, 张相, 朱娜丽, 李灵香玉, 王亚韡. 蛋白冠的形成、分析及生物效应研究进展[J]. 生态毒理学报, 2022, 17(3): 95-110. doi: 10.7524/AJE.1673-5897.20220206001
引用本文: 汤杰, 张相, 朱娜丽, 李灵香玉, 王亚韡. 蛋白冠的形成、分析及生物效应研究进展[J]. 生态毒理学报, 2022, 17(3): 95-110. doi: 10.7524/AJE.1673-5897.20220206001
Tang Jie, Zhang Xiang, Zhu Nali, Li Lingxiangyu, Wang Yawei. Review on Formation, Analysis and Bioeffect of Protein Corona[J]. Asian journal of ecotoxicology, 2022, 17(3): 95-110. doi: 10.7524/AJE.1673-5897.20220206001
Citation: Tang Jie, Zhang Xiang, Zhu Nali, Li Lingxiangyu, Wang Yawei. Review on Formation, Analysis and Bioeffect of Protein Corona[J]. Asian journal of ecotoxicology, 2022, 17(3): 95-110. doi: 10.7524/AJE.1673-5897.20220206001

蛋白冠的形成、分析及生物效应研究进展

    通讯作者: 李灵香玉, E-mail: lingxiangyu.li@ucas.ac.cn
    作者简介: 汤杰(1998—),男,硕士研究生,研究方向为纳米生物界面,E-mail:tangjie201@mails.ucas.ac.cn
  • 1. 国科大杭州高等研究院环境学院, 杭州 310024;
  • 2. 中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室, 北京 100085
基金项目:

国家自然科学基金面上项目(21976163);国家自然科学基金创新研究群体基金项目(22021003)

摘要: 纳米颗粒被生物体摄入到体内后不可避免地会与蛋白质相互作用形成蛋白冠。根据蛋白质与纳米颗粒表面的亲和程度与相互作用方式,蛋白冠通常被分为软蛋白冠和硬蛋白冠。蛋白冠的形成使得纳米颗粒具有新的生物学特征,进而影响纳米颗粒在生物体或环境体系中的吸收/吸附、分布、转化与归趋。蛋白冠的结构与组成主要受纳米颗粒、蛋白质和介质条件等因素的影响,其在纳米颗粒的细胞摄入和生物分布过程中发挥着重要作用,能够影响纳米颗粒的生物效应。本文重点对蛋白冠的形成与影响因素、蛋白冠的表征分析方法和蛋白冠对纳米颗粒生物效应的影响3个方面进行了归纳总结,并展望了潜在的重点研究方向,以期为蛋白冠的应用和风险评估提供一定的参考。

English Abstract

参考文献 (119)

返回顶部

目录

/

返回文章
返回