4种唑类杀菌剂对蛋白核小球藻的急性毒性及其致毒机理

刘敏, 覃礼堂, 莫凌云, 梁延鹏, 曾鸿鹄. 4种唑类杀菌剂对蛋白核小球藻的急性毒性及其致毒机理[J]. 生态毒理学报, 2021, 16(4): 301-312. doi: 10.7524/AJE.1673-5897.20200923001
引用本文: 刘敏, 覃礼堂, 莫凌云, 梁延鹏, 曾鸿鹄. 4种唑类杀菌剂对蛋白核小球藻的急性毒性及其致毒机理[J]. 生态毒理学报, 2021, 16(4): 301-312. doi: 10.7524/AJE.1673-5897.20200923001
Liu Min, Qin Litang, Mo Lingyun, Liang Yanpeng, Zeng Honghu. Acute Toxicity and Mechanism of Four Azole Fungicides to Chlorella pyrenoidosa[J]. Asian journal of ecotoxicology, 2021, 16(4): 301-312. doi: 10.7524/AJE.1673-5897.20200923001
Citation: Liu Min, Qin Litang, Mo Lingyun, Liang Yanpeng, Zeng Honghu. Acute Toxicity and Mechanism of Four Azole Fungicides to Chlorella pyrenoidosa[J]. Asian journal of ecotoxicology, 2021, 16(4): 301-312. doi: 10.7524/AJE.1673-5897.20200923001

4种唑类杀菌剂对蛋白核小球藻的急性毒性及其致毒机理

    作者简介: 刘敏(1996-),女,硕士研究生,研究方向为混合物毒性分析及健康风险评估,E-mail:liumin0262@126.com
    通讯作者: 覃礼堂, E-mail: qinsar@163.com
  • 基金项目:

    国家自然科学基金资助项目(21866010,21667013);桂林市科学技术研究开发项目(20180107-5,20180101-1);广西“八桂学者”岗位专项经费;广西科技计划项目(桂科AD18126018)

  • 中图分类号: X171.5

Acute Toxicity and Mechanism of Four Azole Fungicides to Chlorella pyrenoidosa

    Corresponding author: Qin Litang, qinsar@163.com
  • Fund Project:
  • 摘要: 唑类杀菌剂因其广谱性和稳定性会残留在水环境中,从而危害人类及其他生物的健康。目前对唑类杀菌剂的毒性研究大多集中在急性毒性,对其致毒机理知之甚少。本研究将三唑醇、三唑酮、克霉唑和氯咪巴唑4种常见的唑类杀菌剂作为目标污染物,以蛋白核小球藻作为指示生物,研究4种唑类杀菌剂暴露96 h后对蛋白核小球藻生长和生理变化的抑制作用。结果表明,4种目标污染物浓度越高对蛋白核小球藻的生长抑制程度越强,在50%效应下,96 h时毒性大小为:氯咪巴唑>克霉唑>三唑醇>三唑酮。其毒性机制可能与活性氧(ROS)的持续积累有关,随着污染物浓度升高,ROS含量不断增加,其中刺激作用最明显的是克霉唑,ROS的增加促进丙二醛(MDA)的大量产生,从而使绿藻产生氧化损伤,激发了不同水平的超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的活性;同时,它们对叶绿素和蛋白质的合成也存在明显的抑制,破坏了绿藻的光合机制,最终造成藻细胞凋亡。研究结果为评估唑类杀菌剂对水生生物的毒性提供重要的理论支持。
  • 加载中
  • 黄子晏, 陶梦婷, 张瑾, 等. 重金属与农药污染物对青海弧菌Q67拮抗作用的定量评估[J]. 环境化学, 2020, 39(9):2441-2449

    Huang Z Y, Tao M T, Zhang J, et al. Quantitative evaluation on the antagonism between heavy mental and pesticide pollutants to Vibrio qinghaiensis sp.-Q67[J]. Environmental Chemistry, 2020, 39(9):2441-2449(in Chinese)

    Giavini E, Menegola E. Are azole fungicides a teratogenic risk for human conceptus?[J]. Toxicology Letters, 2010, 198(2):106-111
    Souders C L 2nd, Perez-Rodriguez V, El Ahmadie N, et al. Investigation into the sub-lethal effects of the triazole fungicide triticonazole in zebrafish (Danio rerio) embryos/larvae[J]. Environmental Toxicology, 2020, 35(2):254-267
    Trösken E R, Bittner N, Völkel W. Quantitation of 13 azole fungicides in wine samples by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2005, 1083(1-2):113-119
    Zhong Y H, Chen Z F, Liu S S, et al. Analysis of azole fungicides in fish muscle tissues:Multi-factor optimization and application to environmental samples[J]. Journal of Hazardous Materials, 2017, 324:535-543
    Huang Q X, Zhang J L, Xiong S S, et al. Development of ultrasound-assisted extraction of commonly used azole antifungals in soils[J]. Analytical Methods, 2018, 10(44):5265-5272
    Herrero-Hernández E, Pose-Juan E, Sánchez-Martín M J, et al. Intra-annual trends of fungicide residues in waters from vineyard areas in La Rioja region of northern Spain[J]. Environmental Science and Pollution Research, 2016, 23(22):22924-22936
    刘娜, 金小伟, 穆云松, 等. 三唑酮在水环境中的环境行为、毒性效应及生态风险[J]. 生态毒理学报, 2017, 12(4):65-75

    Liu N, Jin X W, Mu Y S, et al. Review of environmental behavior, toxicity and ecological risk of triadimefon in the aquatic environment[J]. Asian Journal of Ecotoxicology, 2017, 12(4):65-75(in Chinese)

    Boithias L, Sauvage S, Merlina G, et al. New insight into pesticide partition coefficient Kd for modelling pesticide fluvial transport:Application to an agricultural catchment in south-western France[J]. Chemosphere, 2014, 99:134-142
    Li M H. Comparative toxicities of 10 widely used biocides in three freshwater invertebrate species[J]. Chemistry and Ecology, 2019, 35(5):472-482
    Zhang W J, Deng Y, Chen L, et al. Effect of triadimefon and its metabolite on adult amphibians Xenopus laevis[J]. Chemosphere, 2020, 243:125288
    孙健, 肖鹏飞, 刘毅华, 等. 利用室内微宇宙系统研究三唑酮对淡水浮游动物群落的影响[J]. 生态毒理学报, 2020, 15(4):139-148

    Sun J, Xiao P F, Liu Y H, et al. Study on the effect of triadimefon on freshwater zooplankton community using indoor microcosm system[J]. Asian Journal of Ecotoxicology, 2020, 15(4):139-148(in Chinese)

    Liu B Y, Liu W Q, Nie X P, et al. Growth response and toxic effects of three antibiotics on Selenastrum capricornutum evaluated by photosynthetic rate and chlorophyll biosynthesis[J]. Journal of Environmental Sciences, 2011, 23(9):1558-1563
    Aderemi A O, Novais S C, Lemos M F L, et al. Oxidative stress responses and cellular energy allocation changes in microalgae following exposure to widely used human antibiotics[J]. Aquatic Toxicology, 2018, 203:130-139
    宋崇崇, 陶梦婷, 张瑾, 等. 3种重金属对蛋白核小球藻的联合毒性及机理[J]. 环境科学与技术, 2020, 43(2):88-95

    Song C C, Tao M T, Zhang J, et al. Combined toxicity and the mechanisms of three heavy metals to Chlorella pyrenoidosa[J]. Environmental Science & Technology, 2020, 43(2):88-95(in Chinese)

    Nong Q Y, Liu Y, Qin L T, et al. Toxic mechanism of three azole fungicides and their mixture to green alga Chlorella pyrenoidosa[J]. Chemosphere, 2021, 262:127793
    农琼媛, 覃礼堂, 莫凌云, 等. 抗生素与三唑类杀菌剂混合物对羊角月牙藻的长期毒性相互作用研究[J]. 生态毒理学报, 2019, 14(4):140-149

    Nong Q Y, Qin L T, Mo L Y, et al. The toxic interactions of long-term effects involving antibiotics and triazole fungicides on Selenastrum capricornutum[J]. Asian Journal of Ecotoxicology, 2019, 14(4):140-149(in Chinese)

    王滔, 班龙科, 张瑾, 等. 三嗪类农药复合污染物对蛋白核小球藻的联合毒性作用评估[J]. 农业环境科学学报, 2020, 39(3):482-495

    Wang T, Ban L K, Zhang J, et al. Evaluation of combined toxicity of triazine pesticide contaminants against Chlorella pyrenoidosa[J]. Journal of Agro-Environment Science, 2020, 39(3):482-495(in Chinese)

    曾莎莎, 梁延鹏, 覃礼堂, 等. 有机磷农药对蛋白核小球藻的毒性相互作用研究[J]. 生态毒理学报, 2019, 14(4):121-129

    Zeng S S, Liang Y P, Qin L T, et al. Toxicological interactions of organophosphorus pesticides mixtures to Chlorella pyrenoidosa[J]. Asian Journal of Ecotoxicology, 2019, 14(4):121-129(in Chinese)

    Bharte S, Desai K. The enhanced lipid productivity of Chlorella minutissima and Chlorella pyrenoidosa by carbon coupling nitrogen manipulation for biodiesel production[J]. Environmental Science and Pollution Research International, 2019, 26(4):3492-3500
    Mo L Y, Zheng M Y, Qin M, et al. Quantitative characterization of the toxicities of Cd-Ni and Cd-Cr binary mixtures using combination index method[J]. BioMed Research International, 2016, 2016:4158451
    Organization for Economic Co-operation and Development (OECD). Test No. 201:Alga, growth inhibition test[R]. Paris:OECD, 2006
    Mo L Y, Zhao D N, Qin M, et al. Joint toxicity of six common heavy metals to Chlorella pyrenoidosa[J]. Environmental Science and Pollution Research International, 2019, 26(30):30554-30560
    刘树深. 化学混合物毒性评估与预测方法[M]. 北京:科学出版社, 2017:30-39
    郑乔峰, 居珍, 刘树深. 敌敌畏及其代谢产物对青海弧菌和秀丽线虫的联合毒性[J]. 化学学报, 2019, 77(10):1008-1016

    Zheng Q F, Ju Z, Liu S S. Combined toxicity of dichlorvos and its metabolites to Vibrio qinghaiensis sp.-Q67 and Caenorhabditis elegans[J]. Acta Chimica Sinica, 2019, 77(10):1008-1016(in Chinese)

    Qin L T, Zhang X, Mo L Y, et al. Further exploring linear concentration addition and independent action for predicting non-interactive mixture toxicity[J]. Chinese Journal of Structural Chemistry, 2017, 36(6):886-896
    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1-2):248-254
    Aebi H. Catalase in Vitro[M]//Methods in Enzymology. Amsterdam:Elsevier, 1984:121-126
    Beauchamp C, Fridovich I. Superoxide dismutase:Improved assays and an assay applicable to acrylamide gels[J]. Analytical Biochemistry, 1971, 44(1):276-287
    Zhao J, Cao X S, Wang Z Y, et al. Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae[J]. Water Research, 2017, 111:18-27
    Souza L R R, Bernardes L E, Barbetta M F S, et al. Iron oxide nanoparticle phytotoxicity to the aquatic plant Lemna minor:Effect on reactive oxygen species (ROS) production and chlorophyll a/chlorophyll b ratio[J]. Environmental Science and Pollution Research International, 2019, 26(23):24121-24131
    Knauert S, Knauer K. The role of reactive oxygen species in copper toxicity to two freshwater green algae[J]. Journal of Phycology, 2008, 44(2):311-319
    刘滨扬. 红霉素、环丙沙星和磺胺甲噁唑对羊角月牙藻的毒性效应及其作用机理[D]. 广州:暨南大学, 2011:18 Liu B Y. Toxic effects and its mechanism of erythromycin, ciprofloxacin and sulfamethoxazole to Selenastrum capricornutum[D]. Guangzhou:Jinan University, 2011:18(in Chinese)
    王桂祥. 低浓度混合抗生素对普通小球藻的联合毒性效应及机理[D]. 青岛:青岛科技大学, 2019:10-80 Wang G X. Combined effects and mechanisms of low concentration mixed antibiotics on Chlorella vulgaris[D]. Qingdao:Qingdao University of Science & Technology, 2019:10

    -80(in Chinese)

    Liu C X, Wang B, Diao J L, et al. Enantioselective toxicity and bioaccumulation of epoxiconazole enantiomers to the green alga Scenedesmus obliquus[J]. RSC Advances, 2016, 6(64):59842-59850
    Cheng C, Huang L D, Diao J L, et al. Enantioselective toxic effects and degradation of myclobutanil enantiomers in Scenedesmus obliquus[J]. Chirality, 2013, 25(12):858-864
    Mahfooz S, Shamim A, Husain A, et al. Physicochemical characterisation and ecotoxicological assessment of nano-silver using two cyanobacteria Nostoc muscorum and Plectonema boryanum[J]. International Journal of Environmental Science and Technology, 2019, 16(8):4407-4418
    Pancha I, Chokshi K, Maurya R, et al. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077[J]. Bioresource Technology, 2015, 189:341-348
    Zhao P C, Wang Y M, Huang W, et al. Toxic effects of terpinolene on Microcystis aeruginosa:Physiological, metabolism, gene transcription, and growth effects[J]. Science of the Total Environment, 2020, 719:137376
    González A, Sáez C A, Morales B, et al. Copper-induced activation of TRP channels promotes extracellular calcium entry and activation of CaMK, PKA, PKC, PKG and CBLPK leading to increased expression of antioxidant enzymes in Ectocarpus siliculosus[J]. Plant Physiology and Biochemistry, 2018, 126:106-116
    Wang S T, Zhuang C L, Du J, et al. The presence of MWCNTs reduces developmental toxicity of PFOS in early life stage of zebrafish[J]. Environmental Pollution, 2017, 222:201-209
    Zhang W J, Cheng C, Chen L, et al. Enantioselective toxic effects of cyproconazole enantiomers against Chlorella pyrenoidosa[J]. Chemosphere, 2016, 159:50-57
    Zhao P C, Wang Y M, Lin Z Y, et al. The alleviative effect of exogenous phytohormones on the growth, physiology and gene expression of Tetraselmis cordiformis under high ammonia-nitrogen stress[J]. Bioresource Technology, 2019, 282:339-347
    Sun X M, Ren L J, Bi Z Q, et al. Adaptive evolution of microalgae Schizochytrium sp. under high salinity stress to alleviate oxidative damage and improve lipid biosynthesis[J]. Bioresource Technology, 2018, 267:438-444
    Xiong J Q, Kurade M B, Kim J R, et al. Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana[J]. Journal of Hazardous Materials, 2017, 323(Pt A):212-219
    Oliver J D. Recent findings on the viable but nonculturable state in pathogenic bacteria[J]. FEMS Microbiology Reviews, 2010, 34(4):415-425
    Zhang S H, Ye C S, Lin W F, et al. Response to comment on "UV disinfection induces a VBNC state in Escherichia coli and Pseudomonas aeruginosa"[J]. Environmental Science & Technology, 2015, 49(17):10752-10753
    Li J, Zheng X Q, Liu K C, et al. Effect of tetracycline on the growth and nutrient removal capacity of Chlamydomonas reinhardtii in simulated effluent from wastewater treatment plants[J]. Bioresource Technology, 2016, 218:1163-1169
    郭庆亮. 咪唑类离子液体对蛋白核小球藻致毒效应及机制研究[D]. 泉州:华侨大学, 2013:40 Guo Q L. The toxic effects of imidazolium-based ionic liquids and the cytotoxic mechanism on Chlorella pyrenoidosa[D]. Quanzhou:Huaqiao University, 2013:40(in Chinese)
    Tanaka A, Ito H, Tanaka R, et al. Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(21):12719-12723
    Vishnevetsky M, Ovadis M, Vainstein A. Carotenoid sequestration in plants:The role of carotenoid-associated proteins[J]. Trends in Plant Science, 1999, 4(6):232-235
    魏勇超, 王彦华, 雷成琦, 等. 环境中多残留农药复合暴露对淡水绿藻和斑马鱼的联合毒性[J]. 环境工程, 2018, 36(11):185-189

    Wei Y C, Wang Y H, Lei C Q, et al. Combined toxicity of co-exposure to multiple pesticide residues in environment to freshwater green algae and zebrafish[J]. Environmental Engineering, 2018, 36(11):185-189(in Chinese)

  • 加载中
计量
  • 文章访问数:  1797
  • HTML全文浏览数:  1797
  • PDF下载数:  80
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-09-23
刘敏, 覃礼堂, 莫凌云, 梁延鹏, 曾鸿鹄. 4种唑类杀菌剂对蛋白核小球藻的急性毒性及其致毒机理[J]. 生态毒理学报, 2021, 16(4): 301-312. doi: 10.7524/AJE.1673-5897.20200923001
引用本文: 刘敏, 覃礼堂, 莫凌云, 梁延鹏, 曾鸿鹄. 4种唑类杀菌剂对蛋白核小球藻的急性毒性及其致毒机理[J]. 生态毒理学报, 2021, 16(4): 301-312. doi: 10.7524/AJE.1673-5897.20200923001
Liu Min, Qin Litang, Mo Lingyun, Liang Yanpeng, Zeng Honghu. Acute Toxicity and Mechanism of Four Azole Fungicides to Chlorella pyrenoidosa[J]. Asian journal of ecotoxicology, 2021, 16(4): 301-312. doi: 10.7524/AJE.1673-5897.20200923001
Citation: Liu Min, Qin Litang, Mo Lingyun, Liang Yanpeng, Zeng Honghu. Acute Toxicity and Mechanism of Four Azole Fungicides to Chlorella pyrenoidosa[J]. Asian journal of ecotoxicology, 2021, 16(4): 301-312. doi: 10.7524/AJE.1673-5897.20200923001

4种唑类杀菌剂对蛋白核小球藻的急性毒性及其致毒机理

    通讯作者: 覃礼堂, E-mail: qinsar@163.com
    作者简介: 刘敏(1996-),女,硕士研究生,研究方向为混合物毒性分析及健康风险评估,E-mail:liumin0262@126.com
  • 1. 桂林理工大学环境科学与工程学院, 桂林 541004;
  • 2. 桂林理工大学, 广西环境污染控制理论与技术重点实验室科教结合科技创新基地, 桂林 541004;
  • 3. 桂林理工大学, 广西环境污染控制理论与技术重点实验室, 桂林 541004
基金项目:

国家自然科学基金资助项目(21866010,21667013);桂林市科学技术研究开发项目(20180107-5,20180101-1);广西“八桂学者”岗位专项经费;广西科技计划项目(桂科AD18126018)

摘要: 唑类杀菌剂因其广谱性和稳定性会残留在水环境中,从而危害人类及其他生物的健康。目前对唑类杀菌剂的毒性研究大多集中在急性毒性,对其致毒机理知之甚少。本研究将三唑醇、三唑酮、克霉唑和氯咪巴唑4种常见的唑类杀菌剂作为目标污染物,以蛋白核小球藻作为指示生物,研究4种唑类杀菌剂暴露96 h后对蛋白核小球藻生长和生理变化的抑制作用。结果表明,4种目标污染物浓度越高对蛋白核小球藻的生长抑制程度越强,在50%效应下,96 h时毒性大小为:氯咪巴唑>克霉唑>三唑醇>三唑酮。其毒性机制可能与活性氧(ROS)的持续积累有关,随着污染物浓度升高,ROS含量不断增加,其中刺激作用最明显的是克霉唑,ROS的增加促进丙二醛(MDA)的大量产生,从而使绿藻产生氧化损伤,激发了不同水平的超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的活性;同时,它们对叶绿素和蛋白质的合成也存在明显的抑制,破坏了绿藻的光合机制,最终造成藻细胞凋亡。研究结果为评估唑类杀菌剂对水生生物的毒性提供重要的理论支持。

English Abstract

参考文献 (52)

返回顶部

目录

/

返回文章
返回