乙草胺胁迫对水华微囊藻光合生理特性的影响

李俊杰, 李玲, 黄沛玲. 乙草胺胁迫对水华微囊藻光合生理特性的影响[J]. 生态毒理学报, 2020, 15(5): 244-254. doi: 10.7524/AJE.1673-5897.20191225002
引用本文: 李俊杰, 李玲, 黄沛玲. 乙草胺胁迫对水华微囊藻光合生理特性的影响[J]. 生态毒理学报, 2020, 15(5): 244-254. doi: 10.7524/AJE.1673-5897.20191225002
Li Junjie, Li Ling, Huang Peiling. Effects of Acetochlor Stress on Photosynthetic Physiology of Microcystis flos-aquae[J]. Asian journal of ecotoxicology, 2020, 15(5): 244-254. doi: 10.7524/AJE.1673-5897.20191225002
Citation: Li Junjie, Li Ling, Huang Peiling. Effects of Acetochlor Stress on Photosynthetic Physiology of Microcystis flos-aquae[J]. Asian journal of ecotoxicology, 2020, 15(5): 244-254. doi: 10.7524/AJE.1673-5897.20191225002

乙草胺胁迫对水华微囊藻光合生理特性的影响

    作者简介: 李俊杰(1995-),男,硕士,研究方向为农药毒理学,E-mail:474409289@qq.com
    通讯作者: 李玲, E-mail: liling19830826@hqu.edu.cn
  • 基金项目:

    福建省中青年教师科研项目(JAT160027);石狮市科技计划项目(2016FS21);华侨大学研究生科研创新能力培育计划资助项目(12BS108)

  • 中图分类号: X171.5

Effects of Acetochlor Stress on Photosynthetic Physiology of Microcystis flos-aquae

    Corresponding author: Li Ling, liling19830826@hqu.edu.cn
  • Fund Project:
  • 摘要: 除草剂乙草胺(ACT)施用后会通过灌溉侵蚀或地表径流等方式进入水环境造成污染。为探究ACT对浮游植物的影响,选择水华微囊藻作为受试生物,测定叶绿素a(Chl a)含量、叶绿素荧光参数、藻蛋白和藻胆蛋白相对含量的变化,观察藻细胞超微结构的变化,综合评估ACT对浮游植物光合作用的影响。结果表明,当ACT浓度≥ 0.1 mg·L-1时,Chl a含量开始显著降低(P<0.05);在低浓度(0.01~1 mg·L-1)ACT胁迫下,水华微囊藻能够通过自身调节,使得最大光合效率(Fv/Fm)、PSⅡ的实际光合效率(Y(Ⅱ))和快速光响应曲线不受ACT影响;而在高浓度(10~50 mg·L-1)处理组中,Fv/Fm、Y(Ⅱ)、快速光响应曲线、光响应曲线的初始斜率(α)和最大潜在相对电子传递速率(ETRmax)均显著降低(P<0.05);别藻蓝蛋白(APC)、藻蓝蛋白(PC)和藻红蛋白(PE)的相对含量分别在ACT浓度为1、10和10 mg·L-1时开始显著降低(P<0.05)。这些结果说明,在高浓度ACT胁迫下,水华微囊藻的叶绿素合成受阻,光合色素减少,捕光能力、光能转化效率及相对电子传递速率均下降,光合活性降低,且ACT对藻胆蛋白的抑制作用顺序为别藻蓝蛋白 > 藻蓝蛋白 > 藻红蛋白,而半饱和光强(Ik)显著增加(P<0.05),耐受能力增强,从而使光合作用受到抑制。透射电子显微镜结果表明,藻细胞结构会被ACT破坏,细胞变形且出现质壁分离,类囊体损伤且垂直于细胞壁,气泡、藻青素小粒和糖原减少,脂质颗粒增多,细胞内部紊乱,捕光色素减少,导致光合作用受阻。上述研究结果为全面评价ACT环境风险及农药的合理利用提供科学依据。
  • 加载中
  • Nemeth K L, Fuleky G, Morovjan G, et al. Sorption behaviour of acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon on Hungarian agricultural soil[J]. Chemosphere, 2002, 48(5):545-552
    Fu L, Lu X, Tan J, et al. Multiresidue determination and potential risks of emerging pesticides in aquatic products from Northeast China by LC-MS/MS[J]. Journal of Environmental Sciences, 2018, 63(1):116-125
    Hladik M L, Bouwer E J, Roberts A L. Neutral chloroacetamide herbicide degradates and related compounds in Midwestern United States drinking water sources[J]. Science of the Total Environment, 2008, 390(1):155-165
    Xie J Q, Zhao L, Liu K, et al. Enantiomeric environmental behavior, oxidative stress and toxin release of harmful cyanobacteria Microcystis aeruginosa in response to napropamide and acetochlor[J]. Environmental Pollution, 2019, 246:728-733
    李薪芳, 索亚萍, 楼鸳鸯, 等. 酰胺类除草剂对铜绿微囊藻的生长影响及氧化损伤效应[J]. 生态毒理学报, 2016, 11(1):239-247

    Li X F, Suo Y P, Lou Y Y, et al. Effects of acetanilide herbicides on growth and oxidative damage of Microcystis aeruginosa[J]. Asian Journal of Ecotoxicology, 2016, 11(1):239-247(in Chinese)

    吴晓霞, 吴进才, 金银根, 等. 除草剂对水生植物的生理生态效应[J]. 生态学报, 2004, 24(9):2037-2042

    Wu X X, Wu J C, Jin Y G, et al. Impact of herbicides on physiology and ecology of hydrophytes[J]. Acta Ecologica Sinica, 2004, 24(9):2037-2042(in Chinese)

    王秀红, 沈健英, 陆贻通. 稻田除草剂对固氮蓝藻的毒性研究[J]. 上海交通大学学报:农业科学版, 2004, 22(4):400-405

    Wang X H, Shen J Y, Lu Y T. Study on herbicides in rice field to toxicity of fixing blue-green algaes[J]. Journal of Shanghai Jiaotong University:Agricultural Science, 2004, 22(4):400-405(in Chinese)

    Li W, Zha J, Li Z, et al. Effects of exposure to acetochlor on the expression of thyroid hormone related genes in larval and adult rare minnow (Gobiocypris rarus)[J]. Aquatic Toxicology, 2009, 94(2):87-93
    Xu C, Sun X H, Niu L L, et al. Enantioselective thyroid disruption in zebrafish embryo-larvae via exposure to environmental concentrations of the chloroacetamide herbicide acetochlor[J]. Science of the Total Environment, 2019, 653:1140-1148
    Li L, Wang M, Chen S, et al. A urinary metabonomics analysis of longterm effect of acetochlor exposure on rats by ultra-performance liquid chromatography/mass spectrometry[J]. Pesticide Biochemistry and Physiology, 2016, 128:82-88
    徐雄, 李春梅, 孙静, 等. 我国重点流域地表水中29种农药污染及其生态风险评价[J]. 生态毒理学报, 2016, 11(2):347-354

    Xu X, Li C M, Sun J, et al. Residue characteristics and ecological risk assessment of twenty-nine pesticides in surface water of major river-basin in China[J]. Asian Journal of Ecotoxicology, 2016, 11(2):347-354(in Chinese)

    Bradford M M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1-2):248-254
    Martínez R E B, Martínez J F. Exposure to the herbicide 2,4-D produces different toxic effects in two different phytoplankters:A green microalga (Ankistrodesmus falcatus) and a toxigenic cyanobacterium (Microcystis aeruginosa)[J]. The Science of the Total Environment, 2018, 619:1566-1578
    邱伟建, 陈敏东, 葛顺, 等. 斜生栅藻对草甘膦异丙胺盐的毒性响应[J]. 环境科学与技术, 2013, 36(12):24-28

    Qiu W J, Chen M D, Ge S, et al. Acute and chronic response of Scenedesmus obliquus to glyphosate-isopropylammonium[J]. Environmental Science & Technology, 2013, 36(12):24-28(in Chinese)

    Wang X F, Miao J J, Pan L Q, et al. Toxicity effects of p-choroaniline on the growth, photosynthesis, respiration capacity and antioxidant enzyme activities of a diatom, Phaeodactylum tricornutu[J]. Ecotoxicology and Environmental Safety, 2019, 169:654-661
    Smythers A L,Garmany A, Perry N L, et al. Characterizing the effect of poast on Chlorella vulgaris, a non-target organism[J]. Chemosphere, 2019, 219:704-712
    Ramón M B, Consuelo A, Bryon R, et al. A protocol to assess heat tolerance in a segregating population of raspberry using chlorophyll fluorescence[J]. Scientia Horticulturae, 2011, 130(3):524-530
    Zhou R, Yu X Q, Katrine H, et al. Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance[J]. Environmental and Experimental Botany, 2015, 118:1-11
    Annick M M, Elisabeth P, Gérard T. Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress[J]. Journal of Plant Physiology, 2004, 161(1):25-33
    Élise S, Marc L, Michel L, et al. Phytoplankton growth and PSⅡ efficiency sensitivity to a glyphosate-based herbicide (Factor 540®)[J]. Aquatic Toxicology, 2017, 192:265-273
    Khanama M R M, Shimasaki Y, Hosain M Z, et al. Diuron causes sinking retardation and physiochemical alteration in marine diatoms Thalassiosira pseudonana and Skeletonema marinoi-dohrnii complex[J]. Chemosphere, 2017, 175:200-209
    刘伟杰, 吴孝情, 鄢佳英, 等. 壬基酚对羊角月牙藻的毒性效应研究[J]. 中国环境科学, 2018, 38(6):2329-2336

    Liu W J, Wu X Q, Yan J Y, et al. Toxic effects of nonylphenol on Selenastrum capricornutum[J]. China Environmental Science, 2018, 38(6):2329-2336(in Chinese)

    Liu D D, Liu H J, Wang S T, et al. The toxicity of ionic liquid 1-decylpyridinium bromide to the algae Scenedesmus obliquus:Growth inhibition, phototoxicity, and oxidative stress[J]. Science of the Total Environment, 2018, 622:1572-1580
    Zhao D H, Cui J S, Duan L L, et al. Study on biological toxicity response characteristic of algae chlorophyll fluorescence to herbicides[J]. Spectroscopy and Spectral Analysis, 2018, 38(9):2820-2827
    王寿兵, 徐紫然, 马小雪, 等. Cu2+对铜绿微囊藻生长及叶绿素荧光主要参数的影响研究[J]. 中国环境科学, 2016, 36(12):3759-3765

    Wang S B, Xu Z R, Ma X X, et al. Effects of Cu2+ on the growth and main parameters of chlorophyll fluorescence of Microcystis aeruginosa[J]. China Environmental Science, 2016, 36(12):3759-3765(in Chinese)

    Ihnken S, Eggert A, Beardall J. Exposure times in rapid light curves affect photosynthetic parameters in algae[J]. Aquatic Botany, 2010, 93(3):185-194
    Wu Y M, Guo P Y, Zhang X Y, et al. Effect of microplastics exposure on the photosynthesis system of freshwater algae[J]. Journal of Hazardous Materials, 2019, 374:219-227
    王俊英. 手性农药水胺硫磷对水生生物的对映体选择性毒理研究[D]. 厦门:华侨大学, 2017:34-42 Wang J Y. Study on enantioselective toxicology of chiral pesticides isocarbophos to aqutic organisms[D]. Xiamen:Huaqiao University, 2017:34

    -42(in Chinese)

    Sandra K T, Martin L, Agnès F M, et al. Herbicide toxicity on river biofilms assessed by pulse amplitude modulated (PAM) fluorometry[J]. Aquatic Toxicology, 2015, 165:160-171
    杨宋琪, 王丽娟, 谢婷, 等. 氮源对杜氏盐藻生长及光合系统Ⅱ的影响[J]. 西北植物学报, 2017, 37(7):1397-1403

    Yang S Q, Wang L J, Xie T, et al. Effect of nitrogen on growth and photosystemⅡ of Dunaliella salina[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(7):1397-1403(in Chinese)

    Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta (BBA)-General Subject, 1989, 990(1):87-92
    Olischläger M, Wiencke C. Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta)[J]. Journal of Experimental Botany, 2013, 64(18):5587-5597
    Dewez D, Didur O, Vincent H J, et al. Validation of photosynthetic-fluorescence parameters as biomarkers for isoproturon toxic effect on alga Scenedesmus obliquus[J]. Environmental Pollution, 2007, 151(1):93-100
    Bi Y F, Miao S S, Lu Y C, et al. Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae[J]. Journal of Hazardous Materials, 2012, 243:242-249
    Deblois C P, Dufresne K, Juneau P, et al. Response to variable light intensity in photoacclimated algae and cyanobacteria exposed to atrazine[J]. Aquatic Toxicology, 2013, 126:77-84
    Ni Y, Lai J H, Wan J B, et al. Photosynthetic responses and accumulation of mesotrione in two freshwater algae[J]. Environmental Science-Processes & Impacts, 2014, 16(10):2288-2294
    Carfagna S, Lanza N, Salbitani G, et al. Physiological and morphological responses of lead or cadmium exposed Chlorella sorokiniana 211-8K (Chlorophyceae)[J]. Springer Plus, 2013, 2(1):147-153
    Chia M A, Cordeiro-Araújo M K, Bittencourt-Oliveira M D C. Growth and antioxidant response of Microcystis aeruginosa (Cyanobacteria) exposed to anatoxin-a[J]. Harmful Algae, 2015, 49:135-142
    Hong Y, Huang J J, Hu H Y. Effects of a novel allelochemical ethyl 2-methyl acetoacetate (EMA) on the ultrastructure and pigment composition of cyanobacterium Microcystis aeruginosa[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 83(4):502-508
    Mathias A C, Promise K C, Wisdom S J. Lead induced antioxidant response and phenotypic plasticity of Scenedesmus quadricauda (Turp.) de Brébisson under different nitrogen concentrations[J]. Journal of Applied Phycology, 2015, 27(1):293-302
    楼春. 17β-雌二醇与酰胺类除草剂和铜绿微囊藻的相互作用研究[D]. 杭州:浙江工业大学, 2011:40-43 Lou C. Study on interaction of 17β-estradiol and amide herbicides with Microcystis aeruginosa[D]. Hangzhou:Zhejiang University of Technology, 2011

    :40-43(in Chinese)

    林必桂, 杨柳燕, 肖琳, 等. 赖氨酸抑制铜绿微囊藻生长的机理研究[J]. 农业环境科学学报, 2008(4):1561-1565 Lin B G, Yang L Y, Xiao L, et al. Mechanism of the inhibition effect of lysine on Microcystis aeruginosa[J]. Journal of Agro-Environment Science, 2008

    (4):1561-1565(in Chinese)

    Canini A, Leonardi D, Grilli C M. Superoxide dismutase activity in the cyanobacterium Microcystis aeruginosa after in vitro induction and decay of a surface bloom[J]. New Phytologist, 2001, 152(1):107-116
    Walsby A E. Isolation and purification of intact gas vesicles from a blue-green alga[J]. Nature, 1969, 224(5220):716-717
    Viviana A, Carolina F, Yolanda Z, et al. Effects of chlorpyrifos on the growth and ultrastructure of green algae, Ankistrodesmus gracilis[J]. Ecotoxicology and Environmental Safety, 2015, 120:334-341
    Canini A, Pellegrini S, Grilli C M. Ultrastructural variations in Microcystis aeruginosa (Chroococcales, Cyanophyta) during a surface bloom induced by high incident light irradiance[J]. Plant Biosystems, 2003, 137(3):235-248
    Ye J, Wang L, Zhang Z, et al. Enantioselective physiological effects of the herbicide diclofop on cyanobacterium Microcystis aeruginosa[J]. Environmental Science & Technology, 2013, 47(8):3893-3901
  • 加载中
计量
  • 文章访问数:  1694
  • HTML全文浏览数:  1694
  • PDF下载数:  104
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-12-25
李俊杰, 李玲, 黄沛玲. 乙草胺胁迫对水华微囊藻光合生理特性的影响[J]. 生态毒理学报, 2020, 15(5): 244-254. doi: 10.7524/AJE.1673-5897.20191225002
引用本文: 李俊杰, 李玲, 黄沛玲. 乙草胺胁迫对水华微囊藻光合生理特性的影响[J]. 生态毒理学报, 2020, 15(5): 244-254. doi: 10.7524/AJE.1673-5897.20191225002
Li Junjie, Li Ling, Huang Peiling. Effects of Acetochlor Stress on Photosynthetic Physiology of Microcystis flos-aquae[J]. Asian journal of ecotoxicology, 2020, 15(5): 244-254. doi: 10.7524/AJE.1673-5897.20191225002
Citation: Li Junjie, Li Ling, Huang Peiling. Effects of Acetochlor Stress on Photosynthetic Physiology of Microcystis flos-aquae[J]. Asian journal of ecotoxicology, 2020, 15(5): 244-254. doi: 10.7524/AJE.1673-5897.20191225002

乙草胺胁迫对水华微囊藻光合生理特性的影响

    通讯作者: 李玲, E-mail: liling19830826@hqu.edu.cn
    作者简介: 李俊杰(1995-),男,硕士,研究方向为农药毒理学,E-mail:474409289@qq.com
  • 华侨大学化工学院, 厦门 361021
基金项目:

福建省中青年教师科研项目(JAT160027);石狮市科技计划项目(2016FS21);华侨大学研究生科研创新能力培育计划资助项目(12BS108)

摘要: 除草剂乙草胺(ACT)施用后会通过灌溉侵蚀或地表径流等方式进入水环境造成污染。为探究ACT对浮游植物的影响,选择水华微囊藻作为受试生物,测定叶绿素a(Chl a)含量、叶绿素荧光参数、藻蛋白和藻胆蛋白相对含量的变化,观察藻细胞超微结构的变化,综合评估ACT对浮游植物光合作用的影响。结果表明,当ACT浓度≥ 0.1 mg·L-1时,Chl a含量开始显著降低(P<0.05);在低浓度(0.01~1 mg·L-1)ACT胁迫下,水华微囊藻能够通过自身调节,使得最大光合效率(Fv/Fm)、PSⅡ的实际光合效率(Y(Ⅱ))和快速光响应曲线不受ACT影响;而在高浓度(10~50 mg·L-1)处理组中,Fv/Fm、Y(Ⅱ)、快速光响应曲线、光响应曲线的初始斜率(α)和最大潜在相对电子传递速率(ETRmax)均显著降低(P<0.05);别藻蓝蛋白(APC)、藻蓝蛋白(PC)和藻红蛋白(PE)的相对含量分别在ACT浓度为1、10和10 mg·L-1时开始显著降低(P<0.05)。这些结果说明,在高浓度ACT胁迫下,水华微囊藻的叶绿素合成受阻,光合色素减少,捕光能力、光能转化效率及相对电子传递速率均下降,光合活性降低,且ACT对藻胆蛋白的抑制作用顺序为别藻蓝蛋白 > 藻蓝蛋白 > 藻红蛋白,而半饱和光强(Ik)显著增加(P<0.05),耐受能力增强,从而使光合作用受到抑制。透射电子显微镜结果表明,藻细胞结构会被ACT破坏,细胞变形且出现质壁分离,类囊体损伤且垂直于细胞壁,气泡、藻青素小粒和糖原减少,脂质颗粒增多,细胞内部紊乱,捕光色素减少,导致光合作用受阻。上述研究结果为全面评价ACT环境风险及农药的合理利用提供科学依据。

English Abstract

参考文献 (47)

返回顶部

目录

/

返回文章
返回