Nemeth K L, Fuleky G, Morovjan G, et al. Sorption behaviour of acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon on Hungarian agricultural soil[J]. Chemosphere, 2002, 48(5):545-552
Fu L, Lu X, Tan J, et al. Multiresidue determination and potential risks of emerging pesticides in aquatic products from Northeast China by LC-MS/MS[J]. Journal of Environmental Sciences, 2018, 63(1):116-125
Hladik M L, Bouwer E J, Roberts A L. Neutral chloroacetamide herbicide degradates and related compounds in Midwestern United States drinking water sources[J]. Science of the Total Environment, 2008, 390(1):155-165
Xie J Q, Zhao L, Liu K, et al. Enantiomeric environmental behavior, oxidative stress and toxin release of harmful cyanobacteria Microcystis aeruginosa in response to napropamide and acetochlor[J]. Environmental Pollution, 2019, 246:728-733
李薪芳, 索亚萍, 楼鸳鸯, 等. 酰胺类除草剂对铜绿微囊藻的生长影响及氧化损伤效应[J]. 生态毒理学报, 2016, 11(1):239-247 Li X F, Suo Y P, Lou Y Y, et al. Effects of acetanilide herbicides on growth and oxidative damage of Microcystis aeruginosa[J]. Asian Journal of Ecotoxicology, 2016, 11(1):239-247(in Chinese)
吴晓霞, 吴进才, 金银根, 等. 除草剂对水生植物的生理生态效应[J]. 生态学报, 2004, 24(9):2037-2042 Wu X X, Wu J C, Jin Y G, et al. Impact of herbicides on physiology and ecology of hydrophytes[J]. Acta Ecologica Sinica, 2004, 24(9):2037-2042(in Chinese)
王秀红, 沈健英, 陆贻通. 稻田除草剂对固氮蓝藻的毒性研究[J]. 上海交通大学学报:农业科学版, 2004, 22(4):400-405 Wang X H, Shen J Y, Lu Y T. Study on herbicides in rice field to toxicity of fixing blue-green algaes[J]. Journal of Shanghai Jiaotong University:Agricultural Science, 2004, 22(4):400-405(in Chinese)
Li W, Zha J, Li Z, et al. Effects of exposure to acetochlor on the expression of thyroid hormone related genes in larval and adult rare minnow (Gobiocypris rarus)[J]. Aquatic Toxicology, 2009, 94(2):87-93
Xu C, Sun X H, Niu L L, et al. Enantioselective thyroid disruption in zebrafish embryo-larvae via exposure to environmental concentrations of the chloroacetamide herbicide acetochlor[J]. Science of the Total Environment, 2019, 653:1140-1148
Li L, Wang M, Chen S, et al. A urinary metabonomics analysis of longterm effect of acetochlor exposure on rats by ultra-performance liquid chromatography/mass spectrometry[J]. Pesticide Biochemistry and Physiology, 2016, 128:82-88
徐雄, 李春梅, 孙静, 等. 我国重点流域地表水中29种农药污染及其生态风险评价[J]. 生态毒理学报, 2016, 11(2):347-354 Xu X, Li C M, Sun J, et al. Residue characteristics and ecological risk assessment of twenty-nine pesticides in surface water of major river-basin in China[J]. Asian Journal of Ecotoxicology, 2016, 11(2):347-354(in Chinese)
Bradford M M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1-2):248-254
Martínez R E B, Martínez J F. Exposure to the herbicide 2,4-D produces different toxic effects in two different phytoplankters:A green microalga (Ankistrodesmus falcatus) and a toxigenic cyanobacterium (Microcystis aeruginosa)[J]. The Science of the Total Environment, 2018, 619:1566-1578
邱伟建, 陈敏东, 葛顺, 等. 斜生栅藻对草甘膦异丙胺盐的毒性响应[J]. 环境科学与技术, 2013, 36(12):24-28 Qiu W J, Chen M D, Ge S, et al. Acute and chronic response of Scenedesmus obliquus to glyphosate-isopropylammonium[J]. Environmental Science & Technology, 2013, 36(12):24-28(in Chinese)
Wang X F, Miao J J, Pan L Q, et al. Toxicity effects of p-choroaniline on the growth, photosynthesis, respiration capacity and antioxidant enzyme activities of a diatom, Phaeodactylum tricornutu[J]. Ecotoxicology and Environmental Safety, 2019, 169:654-661
Smythers A L,Garmany A, Perry N L, et al. Characterizing the effect of poast on Chlorella vulgaris, a non-target organism[J]. Chemosphere, 2019, 219:704-712
Ramón M B, Consuelo A, Bryon R, et al. A protocol to assess heat tolerance in a segregating population of raspberry using chlorophyll fluorescence[J]. Scientia Horticulturae, 2011, 130(3):524-530
Zhou R, Yu X Q, Katrine H, et al. Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance[J]. Environmental and Experimental Botany, 2015, 118:1-11
Annick M M, Elisabeth P, Gérard T. Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress[J]. Journal of Plant Physiology, 2004, 161(1):25-33
Élise S, Marc L, Michel L, et al. Phytoplankton growth and PSⅡ efficiency sensitivity to a glyphosate-based herbicide (Factor 540®)[J]. Aquatic Toxicology, 2017, 192:265-273
Khanama M R M, Shimasaki Y, Hosain M Z, et al. Diuron causes sinking retardation and physiochemical alteration in marine diatoms Thalassiosira pseudonana and Skeletonema marinoi-dohrnii complex[J]. Chemosphere, 2017, 175:200-209
刘伟杰, 吴孝情, 鄢佳英, 等. 壬基酚对羊角月牙藻的毒性效应研究[J]. 中国环境科学, 2018, 38(6):2329-2336 Liu W J, Wu X Q, Yan J Y, et al. Toxic effects of nonylphenol on Selenastrum capricornutum[J]. China Environmental Science, 2018, 38(6):2329-2336(in Chinese)
Liu D D, Liu H J, Wang S T, et al. The toxicity of ionic liquid 1-decylpyridinium bromide to the algae Scenedesmus obliquus:Growth inhibition, phototoxicity, and oxidative stress[J]. Science of the Total Environment, 2018, 622:1572-1580
Zhao D H, Cui J S, Duan L L, et al. Study on biological toxicity response characteristic of algae chlorophyll fluorescence to herbicides[J]. Spectroscopy and Spectral Analysis, 2018, 38(9):2820-2827
王寿兵, 徐紫然, 马小雪, 等. Cu2+对铜绿微囊藻生长及叶绿素荧光主要参数的影响研究[J]. 中国环境科学, 2016, 36(12):3759-3765 Wang S B, Xu Z R, Ma X X, et al. Effects of Cu2+ on the growth and main parameters of chlorophyll fluorescence of Microcystis aeruginosa[J]. China Environmental Science, 2016, 36(12):3759-3765(in Chinese)
Ihnken S, Eggert A, Beardall J. Exposure times in rapid light curves affect photosynthetic parameters in algae[J]. Aquatic Botany, 2010, 93(3):185-194
Wu Y M, Guo P Y, Zhang X Y, et al. Effect of microplastics exposure on the photosynthesis system of freshwater algae[J]. Journal of Hazardous Materials, 2019, 374:219-227
王俊英. 手性农药水胺硫磷对水生生物的对映体选择性毒理研究[D]. 厦门:华侨大学, 2017:34-42 Wang J Y. Study on enantioselective toxicology of chiral pesticides isocarbophos to aqutic organisms[D]. Xiamen:Huaqiao University, 2017:34 -42(in Chinese)
Sandra K T, Martin L, Agnès F M, et al. Herbicide toxicity on river biofilms assessed by pulse amplitude modulated (PAM) fluorometry[J]. Aquatic Toxicology, 2015, 165:160-171
杨宋琪, 王丽娟, 谢婷, 等. 氮源对杜氏盐藻生长及光合系统Ⅱ的影响[J]. 西北植物学报, 2017, 37(7):1397-1403 Yang S Q, Wang L J, Xie T, et al. Effect of nitrogen on growth and photosystemⅡ of Dunaliella salina[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(7):1397-1403(in Chinese)
Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta (BBA)-General Subject, 1989, 990(1):87-92
Olischläger M, Wiencke C. Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta)[J]. Journal of Experimental Botany, 2013, 64(18):5587-5597
Dewez D, Didur O, Vincent H J, et al. Validation of photosynthetic-fluorescence parameters as biomarkers for isoproturon toxic effect on alga Scenedesmus obliquus[J]. Environmental Pollution, 2007, 151(1):93-100
Bi Y F, Miao S S, Lu Y C, et al. Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae[J]. Journal of Hazardous Materials, 2012, 243:242-249
Deblois C P, Dufresne K, Juneau P, et al. Response to variable light intensity in photoacclimated algae and cyanobacteria exposed to atrazine[J]. Aquatic Toxicology, 2013, 126:77-84
Ni Y, Lai J H, Wan J B, et al. Photosynthetic responses and accumulation of mesotrione in two freshwater algae[J]. Environmental Science-Processes & Impacts, 2014, 16(10):2288-2294
Carfagna S, Lanza N, Salbitani G, et al. Physiological and morphological responses of lead or cadmium exposed Chlorella sorokiniana 211-8K (Chlorophyceae)[J]. Springer Plus, 2013, 2(1):147-153
Chia M A, Cordeiro-Araújo M K, Bittencourt-Oliveira M D C. Growth and antioxidant response of Microcystis aeruginosa (Cyanobacteria) exposed to anatoxin-a[J]. Harmful Algae, 2015, 49:135-142
Hong Y, Huang J J, Hu H Y. Effects of a novel allelochemical ethyl 2-methyl acetoacetate (EMA) on the ultrastructure and pigment composition of cyanobacterium Microcystis aeruginosa[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 83(4):502-508
Mathias A C, Promise K C, Wisdom S J. Lead induced antioxidant response and phenotypic plasticity of Scenedesmus quadricauda (Turp.) de Brébisson under different nitrogen concentrations[J]. Journal of Applied Phycology, 2015, 27(1):293-302
楼春. 17β-雌二醇与酰胺类除草剂和铜绿微囊藻的相互作用研究[D]. 杭州:浙江工业大学, 2011:40-43 Lou C. Study on interaction of 17β-estradiol and amide herbicides with Microcystis aeruginosa[D]. Hangzhou:Zhejiang University of Technology, 2011 :40-43(in Chinese)
林必桂, 杨柳燕, 肖琳, 等. 赖氨酸抑制铜绿微囊藻生长的机理研究[J]. 农业环境科学学报, 2008(4):1561-1565 Lin B G, Yang L Y, Xiao L, et al. Mechanism of the inhibition effect of lysine on Microcystis aeruginosa[J]. Journal of Agro-Environment Science, 2008 (4):1561-1565(in Chinese)
Canini A, Leonardi D, Grilli C M. Superoxide dismutase activity in the cyanobacterium Microcystis aeruginosa after in vitro induction and decay of a surface bloom[J]. New Phytologist, 2001, 152(1):107-116
Walsby A E. Isolation and purification of intact gas vesicles from a blue-green alga[J]. Nature, 1969, 224(5220):716-717
Viviana A, Carolina F, Yolanda Z, et al. Effects of chlorpyrifos on the growth and ultrastructure of green algae, Ankistrodesmus gracilis[J]. Ecotoxicology and Environmental Safety, 2015, 120:334-341
Canini A, Pellegrini S, Grilli C M. Ultrastructural variations in Microcystis aeruginosa (Chroococcales, Cyanophyta) during a surface bloom induced by high incident light irradiance[J]. Plant Biosystems, 2003, 137(3):235-248
Ye J, Wang L, Zhang Z, et al. Enantioselective physiological effects of the herbicide diclofop on cyanobacterium Microcystis aeruginosa[J]. Environmental Science & Technology, 2013, 47(8):3893-3901