微塑料在日本虎斑猛水蚤(Tigriopus japonicus)体内的摄入、排出及对其摄食行为的影响

刘全斌, 张明兴, 丁光辉, 李西山, 张典, 张微微, 王莹, 王菊英. 微塑料在日本虎斑猛水蚤(Tigriopus japonicus)体内的摄入、排出及对其摄食行为的影响[J]. 生态毒理学报, 2020, 15(4): 184-191. doi: 10.7524/AJE.1673-5897.20191216002
引用本文: 刘全斌, 张明兴, 丁光辉, 李西山, 张典, 张微微, 王莹, 王菊英. 微塑料在日本虎斑猛水蚤(Tigriopus japonicus)体内的摄入、排出及对其摄食行为的影响[J]. 生态毒理学报, 2020, 15(4): 184-191. doi: 10.7524/AJE.1673-5897.20191216002
Liu Quanbin, Zhang Mingxing, Ding Guanghui, Li Xishan, Zhang Dian, Zhang Weiwei, Wang Ying, Wang Juying. Uptake and Elimination of Microplastics by Tigriopus japonicus and Its Impact on Feeding Behavior[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 184-191. doi: 10.7524/AJE.1673-5897.20191216002
Citation: Liu Quanbin, Zhang Mingxing, Ding Guanghui, Li Xishan, Zhang Dian, Zhang Weiwei, Wang Ying, Wang Juying. Uptake and Elimination of Microplastics by Tigriopus japonicus and Its Impact on Feeding Behavior[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 184-191. doi: 10.7524/AJE.1673-5897.20191216002

微塑料在日本虎斑猛水蚤(Tigriopus japonicus)体内的摄入、排出及对其摄食行为的影响

    作者简介: 刘全斌(1995-),男,硕士研究生,研究方向为海洋生态毒理学,E-mail:lqb12121@163.com
    通讯作者: 王莹, E-mail: wangying@nmemc.org.cn 王菊英, E-mail: jywang@nmemc.org.cn
  • 基金项目:

    国家重点研发计划专项(2016YFC1402201);中国工程院咨询研究项目(2019-XY-28);国家自然科学基金资助项目(41706117)

  • 中图分类号: X171.5

Uptake and Elimination of Microplastics by Tigriopus japonicus and Its Impact on Feeding Behavior

    Corresponding authors: Wang Ying, wangying@nmemc.org.cn ;  Wang Juying, jywang@nmemc.org.cn
  • Fund Project:
  • 摘要: 微塑料的生态毒理学效应,是近年来国际环境领域的研究热点和前沿问题。然而,由于生物体内的微塑料定量分析存在难度,导致其毒动力学过程和生物影响等方面的研究受限。本研究以10 μm荧光标记的聚苯乙烯(PS)为测试对象,考察了日本虎斑猛水蚤(Tigriopus japonicus)对PS微粒的摄入及排出动力学,以及PS微粒对其摄食行为的影响。结果表明,日本虎斑猛水蚤暴露于表观浓度为1×103个·mL-1的PS微粒溶液,其体内检出的PS微粒的量随着暴露时间增加呈现出逐渐增加的趋势,暴露24 h后达到最大值,为(7.00±2.44)个·只-1n=3),48 h后降至(3.20±1.93)个·只-1n=3)。将暴露于表观浓度为1×103个·mL-1的PS微粒溶液中48 h后的日本虎斑猛水蚤转移至清洁海水中后,体内检出的PS微粒的量呈现下降趋势,24 h后可排出体内96.33%±1.18%(n=3)的PS微粒,48 h后生物体内无PS微粒检出。日本虎斑猛水蚤暴露于表观浓度为1×103个·mL-1的PS微粒溶液中24 h和48 h后,其对微藻的摄食率与对照组相比无显著性差异(P>0.05)。研究结果为科学评估微塑料的生态风险提供依据。
  • 加载中
  • Zarfl C, Matthies M. Are marine plastic particles transport vectors for organic pollutants to the Arctic?[J]. Marine Pollution Bulletin, 2010, 60(10):1810-1814
    Wu N, Zhang Y, Zhang X, et al. Occurrence and distribution of microplastics in surface water and sediments of two typical estuaries in Bohai Bay, China[J]. Environmental Science:Processes and Impacts, 2019, 21(7):1143-1152
    Fendall L S, Sewell M A. Contributing to marine pollution by washing your face:Microplastics in facial cleansers[J]. Marine Pollution Bulletin, 2009, 58(8):1225-1228
    Enders K, Lenz R, Stedmon C A, et al. Abundance, size and polymer composition of marine microplastics ≥ 10μm in the Atlantic Ocean and their modelled vertical distribution[J]. Marine Pollution Bulletin, 2015, 100(1):70-81
    Wang T, Zou X, Li B, et al. Microplastics in a wind farm area:A case study at the Rudong Offshore Wind Farm, Yellow Sea, China[J]. Marine Pollution Bulletin, 2018, 128:466-474
    Morgana S, Ghigliotti L, Estévez-Calvar N, et al. Microplastics in the Arctic:A case study with sub-surface water and fish samples off Northeast Greenland[J]. Environmental Pollution, 2018, 242:1078-1086
    Cai M, He H, Liu M, et al. Lost but can't be neglected:Huge quantities of small microplastics hide in the South China Sea[J]. Science of the Total Environment, 2018, 633(15):1206-1216
    Messinetti S, Mercurio S, Parolini M, et al. Effects of polystyrene microplastics on early stages of two marine invertebrates with different feeding strategies[J]. Environmental Pollution, 2018, 237:1080-1087
    Canniff P M, Hoang T C. Microplastic ingestion by Daphnia magna and its enhancement on algal growth[J]. Science of the Total Environment, 2018, 633(15):500-507
    Green D S. Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities[J]. Environmental Pollution, 2016, 216:95-103
    von Moos N, Burkhardt-Holm P, Höhler A K. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure[J]. Environmental Science and Technology, 2012, 46(20):11327-11335
    Lei L, Wu S, Lu S, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans[J]. Science of the Total Environment, 2017, 619-620(1):1-8
    Veneman W J, Spaink H P, Brun N R, et al. Pathway analysis of systemic transcriptome responses to injected polystyrene particles in zebrafish larvae[J]. Aquatic Toxicology, 2017, 190:112-120
    Batel A, Linti F, Scherer M, et al. Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment:CYP1A induction and visual tracking of persistent organic pollutants[J]. Environmental Toxicology and Chemistry, 2016, 35(7):1656-1666
    Farrell P, Nelson K. Trophic level transfer of microplastic:Mytilus edulis (L.) to Carcinus maenas (L.)[J]. Environmental Pollution, 2013, 177:1-3
    陈启晴, 杨守业, Henner H, 等. 微塑料污染的水生生态毒性与载体作用[J]. 生态毒理学报, 2018, 13(1):16-30

    Chen Q Q, Yang S Y, Henner H, et al. The ecotoxicity and carrier function of microplastics in the aquatic environment[J]. Asian Journal of Ecotoxicology, 2018, 13(1):16-30(in Chinese)

    Cole M, Coppock R, Lindeque P K, et al. Effects of nylon microplastic on feeding, lipid accumulation, and moulting in a coldwater copepod[J]. Environmental Science and Technology, 2019, 53(12):7075-7082
    Sussarellu R, Suquet M, Thomas Y, et al. Oyster reproduction is affected by exposure to polystyrene microplastics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9):2430-2435
    Ziajahromi S, Kumar A, Neale P A, et al. Impact of microplastic beads and fibers on waterflea (Ceriodaphnia dubia) survival, growth, and reproduction:Implications of single and mixture exposures[J]. Environmental Science and Technology, 2017, 51(22):13397-13406
    Cole M, Lindeque P, Fileman E, et al. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus[J]. Environmental Science and Technology, 2015, 49(2):1130-1137
    Sun X, Li Q, Zhu M, et al. Ingestion of microplastics by natural zooplankton groups in the northern South China Sea[J]. Marine Pollution Bulletin, 2017, 115(1-2):217-224
    Sun X, Liang J, Zhu M, et al. Microplastics in seawater and zooplankton from the Yellow Sea[J]. Environmental Pollution, 2018, 242:585-595
    Cole M, Lindeque P, Fileman E, et al. Microplastic ingestion by zooplankton[J]. Environmental Science and Technology, 2013, 47(12):6646-6655
    Wang Y, Mao Z, Zhang M, et al. The uptake and elimination of polystyrene microplastics by the brine shrimp, Artemia parthenogenetica, and its impact on its feeding behavior and intestinal histology[J]. Chemosphere, 2019, 234:123-131
    Lee K, Shim W J, Kwon O Y, et al. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus[J]. Environmental Science and Technology, 2013, 47(19):11278-11283
    Besseling E, Wang B, Lürling M, et al. Nanoplastic affects growth of S. obliquus and reproduction of D. magna[J]. Environmental Science and Technology, 2014, 48(20):12336-12343
    Wang Y, Zhang D, Zhang M, et al. Effects of ingested polystyrene microplastics on brine shrimp, Artemia parthenogenetica[J]. Environmental Pollution, 2019, 244:715-722
    Frost B W. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus[J]. Limnology and Oceanography, 1972, 17(6):805-815
    Jaikumar G, Baas J, Brun N R, et al. Acute sensitivity of three cladoceran species to different types of microplastics in combination with thermal stress[J]. Environmental Pollution, 2018, 239:733-740
    Kokalj A J, Kunej U, Skalar T. Screening study of four environmentally relevant microplastic pollutants:Uptake and effects on Daphnia magna and Artemia franciscana[J]. Chemosphere, 2018, 208:522-529
    Aljaibachi R, Callaghan A. Impact of polystyrene microplastics on Daphnia magna mortality and reproduction in relation to food availability[J]. PeerJ, 2018, 6(4):e4601
    Hu L, Su L, Xue Y, et al. Uptake, accumulation and elimination of polystyrene microspheres in tadpoles of Xenopus tropicalis[J]. Chemosphere, 2016, 164:611-617
    Yi X, Chi T, Li Z, et al. Combined effect of polystyrene plastics and triphenyltin chloride on the green algae Chlorella pyrenoidosa[J]. Environmental Science and Pollution Research, 2019, 26(15):15011-15018
    Seoane M, Gonzalez-Fernandez C, Soudant P, et al. Polystyrene microbeads modulate the energy metabolism of the marine diatom Chaetoceros neogracile[J]. Environmental Pollution, 2019, 251:363-371
    Bergami E, Pugnalini S, Vannuccini M L, et al. Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana[J]. Aquatic Toxicology, 2017, 189:159-169
  • 加载中
计量
  • 文章访问数:  3673
  • HTML全文浏览数:  3673
  • PDF下载数:  133
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-12-16
刘全斌, 张明兴, 丁光辉, 李西山, 张典, 张微微, 王莹, 王菊英. 微塑料在日本虎斑猛水蚤(Tigriopus japonicus)体内的摄入、排出及对其摄食行为的影响[J]. 生态毒理学报, 2020, 15(4): 184-191. doi: 10.7524/AJE.1673-5897.20191216002
引用本文: 刘全斌, 张明兴, 丁光辉, 李西山, 张典, 张微微, 王莹, 王菊英. 微塑料在日本虎斑猛水蚤(Tigriopus japonicus)体内的摄入、排出及对其摄食行为的影响[J]. 生态毒理学报, 2020, 15(4): 184-191. doi: 10.7524/AJE.1673-5897.20191216002
Liu Quanbin, Zhang Mingxing, Ding Guanghui, Li Xishan, Zhang Dian, Zhang Weiwei, Wang Ying, Wang Juying. Uptake and Elimination of Microplastics by Tigriopus japonicus and Its Impact on Feeding Behavior[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 184-191. doi: 10.7524/AJE.1673-5897.20191216002
Citation: Liu Quanbin, Zhang Mingxing, Ding Guanghui, Li Xishan, Zhang Dian, Zhang Weiwei, Wang Ying, Wang Juying. Uptake and Elimination of Microplastics by Tigriopus japonicus and Its Impact on Feeding Behavior[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 184-191. doi: 10.7524/AJE.1673-5897.20191216002

微塑料在日本虎斑猛水蚤(Tigriopus japonicus)体内的摄入、排出及对其摄食行为的影响

    通讯作者: 王莹, E-mail: wangying@nmemc.org.cn ;  王菊英, E-mail: jywang@nmemc.org.cn
    作者简介: 刘全斌(1995-),男,硕士研究生,研究方向为海洋生态毒理学,E-mail:lqb12121@163.com
  • 1. 大连海事大学环境科学与工程学院, 大连 116026;
  • 2. 国家海洋环境监测中心, 海洋垃圾和微塑料研究中心, 大连 116023;
  • 3. 自然资源部第三海洋研究所海洋生物与生态实验室, 厦门 361000
基金项目:

国家重点研发计划专项(2016YFC1402201);中国工程院咨询研究项目(2019-XY-28);国家自然科学基金资助项目(41706117)

摘要: 微塑料的生态毒理学效应,是近年来国际环境领域的研究热点和前沿问题。然而,由于生物体内的微塑料定量分析存在难度,导致其毒动力学过程和生物影响等方面的研究受限。本研究以10 μm荧光标记的聚苯乙烯(PS)为测试对象,考察了日本虎斑猛水蚤(Tigriopus japonicus)对PS微粒的摄入及排出动力学,以及PS微粒对其摄食行为的影响。结果表明,日本虎斑猛水蚤暴露于表观浓度为1×103个·mL-1的PS微粒溶液,其体内检出的PS微粒的量随着暴露时间增加呈现出逐渐增加的趋势,暴露24 h后达到最大值,为(7.00±2.44)个·只-1n=3),48 h后降至(3.20±1.93)个·只-1n=3)。将暴露于表观浓度为1×103个·mL-1的PS微粒溶液中48 h后的日本虎斑猛水蚤转移至清洁海水中后,体内检出的PS微粒的量呈现下降趋势,24 h后可排出体内96.33%±1.18%(n=3)的PS微粒,48 h后生物体内无PS微粒检出。日本虎斑猛水蚤暴露于表观浓度为1×103个·mL-1的PS微粒溶液中24 h和48 h后,其对微藻的摄食率与对照组相比无显著性差异(P>0.05)。研究结果为科学评估微塑料的生态风险提供依据。

English Abstract

参考文献 (35)

返回顶部

目录

/

返回文章
返回