不同磷源对砷胁迫下2种绿藻生长的影响
Stress Effects of Arsenate on Two Common Freshwater Green Microalgae under Different Phosphorus Regimes
-
摘要: 选取常见淡水绿藻——斜生栅藻和蛋白核小球藻为试验藻种,通过室内培养分析其在不同磷源下(溶解性无机磷(DIP)(本研究选取磷酸氢二钾)、β-甘油磷酸钠(β-P)和腺苷-5'-三磷酸二钠盐(ATP-P))的生长差异及受砷酸盐(As(Ⅴ))的胁迫响应。结果表明,在给定的3种磷源下,2种绿藻经连续7 d培养均能增殖,其中,以叶绿素a(Chl a)得到的2种藻的比生长率较细胞光密度(OD)在3种磷源环境下差异更为显著,蛋白核小球藻在ATP环境下的实际光合产率(Yield)较DIP和β-P相对要低(降低约4.55%)且差异显著(P<0.05),总体上斜生栅藻表现出对β-P更好的适应性,蛋白核小球藻则最适应于DIP环境。As(Ⅴ)胁迫不仅改变了不同磷源环境下藻体Yield与OD和Chl a的相关性,使其由原来的无规则相关转变为显著正相关,进而可较好响应不同磷源环境下As(Ⅴ)的胁迫,并且使2种藻体的Chl a在3种磷源环境下以及蛋白核小球藻的Yield在有机与无机磷间均表现出显著差异;由OD、Chl a和Yield得出的3种磷源环境下As(Ⅴ)对斜生栅藻的96 h半数效应浓度(96 h-EC50)均表现为β-P > DIP > ATP-P,且以OD得出的96 h-EC50差异较为显著,分别为2.58×109、4.46×105和1.95×105 μg·L-1,蛋白核小球藻为DIP > ATP-P > β-P,以Yield得出的96 h-EC50差异显著,分别为2.95×109、1.60×106和7.52×104 μg·L-1,说明As(Ⅴ)对藻的胁迫因藻种及其对磷的适应性差异而表现不同;藻对磷的较好适应性一定程度上可以缓解其受As(Ⅴ)的胁迫。OD可较好指示As(Ⅴ)胁迫下斜生栅藻的生长,而Yield可指示As(Ⅴ)胁迫下蛋白核小球藻的生长。研究结果对深入了解不同磷源环境下砷胁迫对淡水藻体的生长影响具有重要科学意义。
-
关键词:
- 砷酸盐(As(Ⅴ)) /
- 斜生栅藻 /
- 蛋白核小球藻 /
- 溶解态有机磷 /
- 无机磷
Abstract: The stress effects of arsenate (As(Ⅴ)) on algal growth were investigated in two green microalgae Scenedesmus obliquus and Chlorella pyrenoidosa under three different phosphorus substrates including the dissolved inorganic phosphorus (DIP) of orthophosphate, dissolved organic phosphorus (DOP) of β-sodium glycerophosphate (β-P) and adenosine triphosphate (ATP-P). Experimental results showed that both of the microalgae in 7 d-culture period could grow well with significant differences in their chlorophyll a (Chl a) under three phosphorus conditions than that of optical density (OD), and actual quantum yield (Yield) of Chlorella pyrenoidosa especially in ATP-P was significantly lower than that of DIP and β-P (about 4.55%). In contrast, better adaptability was presented for Scenedesmus obliquus in β-P condition and Chlorella pyrenoidosa in DIP conditions. The correlations were significantly positive between Yield and Chl a (or OD) of the both microalgae under different phosphorus conditions after As(Ⅴ) exposure, indicating the efficient response of these two algae to As(Ⅴ) stress. Meanwhile, the significant differences of Chl a for the both microalgae were observed under different phosphorus conditions, including the Yield of Chlorella pyrenoidosa between DIP and DOP. The 96 h-EC50 of As(Ⅴ) obtained from OD, Chl a and Yield for the two selected microalgae were consistent under different phosphorus conditions. Specifically, the tolerance of Scenedesmus obliquus to As(Ⅴ) ranked in the order of β-P > DIP > ATP-P, with the 96 h-EC50 obtained from OD of 2.58×109, 4.46×105 and 1.95×105 μg·L-1 which had significant differences; for Chlorella pyrenoidosa the order was DIP > ATP-P > β-P, with the 96 h-EC50 from Yield of 2.95×109, 1.60×106 and 7.52×104 μg·L-1. Suggestively, the stress of As(Ⅴ) on the two selected microalgae were affected by different algal species and their relative adaptabilities to different phosphorus conditions. Specifically, the better adaptability for phosphorus of microalgae could reduce As(Ⅴ) stress. Furthermore, the growth indicator of OD could demonstrate As(Ⅴ) stress well for Scenedesmus obliquus, but it is Yield for Chlorella pyrenoidosa under different phosphorus conditions. Accordingly, our findings will facilitate the comprehensive understanding of As(Ⅴ) effects on freshwater microalgae under different phosphorus conditions. -
-
Havens K E, Hauxwell J, Tyler A C, et al. Complex interactions between autotrophs in shallow marine and freshwater ecosystems:Implications for community responses to nutrient stress[J]. Environmental Pollution, 2001, 113(1):95-107 Harsha V K, Ponnusamy S K, Rames C P. A review on heavy metal pollution, toxicity and remedial measures:Current trends and future perspectives[J]. Journal of Molecular Liquids, 2019, 260:111197 Bill R, Alina A C. Use of dissolved inorganic and organic phosphorus by axenic and nonaxenic clones of Karenia brevis and Karenia mikimotoi[J]. Harmful Algae, 2015, 48:30-36 Wang Z H, Gui H R, Luo Z X, et al. Dissolved organic phosphorus enhances arsenate bioaccumulation and biotransformation in Microcystis aeruginosa[J]. Environmental Pollution, 2019, 252:1755-1763 Adina P, Kathryn R, Sue W, et al. Internal loading of phosphate in Lake Erie Central Basin[J]. Science of the Total Environment, 2017, 579:1356-1365 Chen Q, Chen J A, Wang J F, et al. In situ, high-resolution evidence of phosphorus release from sediments controlled by the reductive dissolution of iron-bound phosphorus in a deep reservoir, southwestern China[J]. Science of the Total Environment, 2019, 666:39-45 徐健, 袁旭音, 叶宏萌, 等. 闽江上游溪流沉积物有机磷空间分布及其环境意义分析[J]. 环境科学, 2019, 40(5):2186-2193 Xu J, Yuan X Y, Ye H M, et al. Spatial distribution of organic phosphorus in sediment and its environmental implication in the upper stream of Minjiang River[J]. Environmental Science, 2019, 40(5):2186-2193(in Chinese)
Niels J S, Wiebke M, Timothy G F, et al. Single-cell imaging of phosphorus uptake shows that key harmful algae rely on different phosphorus sources for growth[J]. Scientific Reports, 2018, 8(1):17182 Jiao Y, Ouyang H L, Jiang Y J. Effects of phosphorus stress on the photosynthetic and physiological characteristics of Chlorella vulgaris, based on chlorophyll fluorescence and flow cytometric analysis[J]. Ecological Indicators, 2017, 78:131-141 Jaroslav V, Markéta M, Linda N, et al. An experimental insight into extracellular phosphatases-Differential induction of cell-specific activity in green algae cultured under various phosphorus conditions[J]. Frontiers in Microbiology, 2018, 9:271 Wang Z H, Liang Y, Kang W. Utilization of dissolved organic phosphorus by different groups of phytoplankton taxa[J]. Harmful Algae, 2011, 12:113-118 Zhao F J, Ma J F, Meharg A A, et al. Arsenic uptake and metabolism in plants[J]. New Phytologist, 2009, 181(4):777-794 Suchi S, Sonal S, Vidisha B, et al. Chlorella vulgaris and Pseudomonas putida interaction modulates phosphate trafficking for reduced arsenic uptake in rice (Oryza sativa L.)[J]. Journal of Hazardous Materials, 2018, 351:177-187 刘金鑫, 谢邵文, 杨芬, 等. 不同生长期和磷浓度下砷酸盐对铜绿微囊藻生长及砷吸收的影响[J]. 环境科学学报, 2017, 37(6):2061-2068 Liu J X, Xie S W, Yang F, et al. Effects of arsenate on the growth and arsenic uptake in Microcystis aeruginosa at different growth phases and phosphorus levels[J]. Acta Scientiae Circumstantiae, 2017, 37(6):2061-2068(in Chinese)
樊香绒, 尹黎燕, 李伟, 等. 不同价态砷对斜生栅藻生长及叶绿素荧光的影响[J]. 水生态学杂志, 2013, 34(5):60-64 Fan X R, Yin L Y, Li W, et al. Effect of arsenic species on the growth and chlorophyll fluorescence characteristics of Scenedesmus obliquus[J]. Journal of Hydroecology, 2013, 34(5):60-64(in Chinese)
钱善勤, 孔繁翔, 张民, 等. 铜绿微囊藻和蛋白核小球藻对不同形态有机磷的利用及其生长[J]. 湖泊科学, 2010, 22(3):411-415 Qian S Q, Kong F X, Zhang M, et al. Utilization of dissolved organic phosphorus and the growth of Microcystis aeruginosa and Chlorella pyrenoidosa[J]. Journal of Lake Sciences, 2010, 22(3):411-415(in Chinese)
赵海超, 王圣瑞, 金相灿, 等. 不同形态磷对黑藻生长和生理特性的影响[J]. 应用与环境生物学报, 2006, 12(3):342-347 Zhao H C, Wang S R, Jin X C, et al. Effect of different forms of phosphorus on growth and physiological activity of Hydrilla verticillata[J]. Chinese Journal of Applied and Environmental Biology, 2006, 12(3):342-347(in Chinese)
梁英, 李泽邦, 刘春强, 等. 不同磷源对3种海洋微藻生长和种间竞争的影响[J]. 海洋湖沼通报, 2017, 39(5):132-140 Liang Y, Li Z B, Liu C Q, et al. Effects of different phosphorus source on the growth and interspecific competition in 3 marine microalgal species[J].Transactions of Oceanology and Limnology, 2017, 39(5):132-140(in Chinese)
王培丽, 沈宏, 陈文捷. 斜生栅藻对振荡和磷胁迫的生理生化响应[J]. 水生生物学报, 2011, 35(3):443-448 Wang P L, Shen H, Chen W J. Physiological and biochemical responses of Scendesmus obliquus to phosphorus and turbulence stress[J]. Acta Hydrobiologica Sinica, 2011, 35(3):443-448(in Chinese)
范宇, 康丽娟, 孙从军, 等. 铜绿微囊藻与蛋白核小球藻的快速定性研究[J]. 环境科学与技术, 2013, 36(S1):282-285 Fan Y, Kang L J, Sun C J, et al. The rapid qualitative technology research of Microcystis aeruginosa and Chlorella pyrenoidosa[J]. Environmental Science & Technology, 2013, 36(S1):282-285(in Chinese)
赵昕宇, 廖利民, 成杰. 基于斜生栅藻培养的城市生活废水资源化利用研究[J]. 水资源保护, 2016(3):44-49 Zhao X Y, Liao L M, Cheng J. Resource utilization of urban sewage water based on cultivation of Scenedesmus obliquas[J]. Water Resources Protection, 2016 (3):44-49(in Chinese)
Barinova S, Tavassi M, Glassman H. Algal indication of pollution in the lower Jordan River, Israel[J]. Applied Ecology & Environmental Research, 2010, 8(1):19-38 Matthew J H, Dianna L B, James W A, et al. Molecular response of the bloom-forming Cyanobacterium, Microcystis aeruginosa, to phosphorus limitation[J]. Microbial Ecology, 2012, 63(1):188-198 Irina B K, Vera I S, Dimiter L T. The biouptake and toxicity of arsenic species on the green microalga chlorella salina in seawater[J]. Aquatic Toxicology, 2008, 87(4):264-271 中华人民共和国国家质量监督检验检疫总局. GB 17378.4-2007. 海洋监测规范第4部分:海水分析[S]. 北京:中国标准出版社,2007 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB 17378.4-2007. The Specification for marine monitoring Part 4:Seawater analysis[S]. Beijing:Standards Press of China, 2007
Seok J O, Tamiji Y, Yukihiro K. Utilization of dissolved organic phosphorus by the two toxic dinoflagellates, Alexandrium tamarense and Gymnodinium catenatum (Dinophyceae)[J]. Fisheries Science, 2002, 68(2):416-424 李俊磊. 中国近海与西太平洋浮游植物光合活性特征研究[D]. 北京:中国科学院大学, 2016:12 Li J L. Studies on the photosynthetic characteristics of phytoplankton in China Sea and the West Pacific[D]. Beijing:University of Chinese Academy of Sciences,2016:12(in Chinese) Mikacla K, Kevin J F. Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate[J]. New Phytologist, 2006, 169(3):525-536 赵艳芳, 俞志明, 宋秀贤, 等. 不同磷源形态对中肋骨条藻和东海原甲藻生长及磷酸酶活性的影响[J].环境科学, 2009, 30(3):693-699 Zhao Y F, Yu Z M, Song X X, et al. Effects of different phosphorus substrates on the growth and phosphatase activity of Skeletonema costatum and Prorocentrum donghaiense[J]. Environmental Science, 2009, 30(3):693-699(in Chinese)
Yruela I, Alfonso M, Inaki Ortiz de Zarate I, et al. Precise location of the Cu(Ⅱ)-inhibitory binding site in higher plant and bacterial photosynthetic reaction centers as probed by light-induced absorption changes[J]. Journal of Biological Chemistry, 1993, 268(3):1684-1689 Guy S, Jean-Claude M, Radovan P. Copper quenching of the variable fluorescence in Dunaliella tertiolecta. New evidence for a copper inhibition effect on PSⅡ photochemistry[J]. Photochemistry and Photobiology, 2008, 48(3):329-332 许荔萍, 周昉, 冯宁, 等. 无机砷影响蛋白核小球藻光合活性的特征研究[J]. 浙江大学学报:理学版, 2017, 44(6):675-681 Xu L P, Zhou F, Feng N, et al. Influence of inorganic arsenic on phosphorus activity of Chlorella pyrenoidosa[J]. Journal of Zhejiang University:Science Edition, 2017, 44(6):675-681(in Chinese)
Wang N X, Li Y, Deng X H. Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes[J]. Water Research, 2013, 47(7):2497-2506 -

计量
- 文章访问数: 1820
- HTML全文浏览数: 1820
- PDF下载数: 64
- 施引文献: 0