石墨烯对高等植物幼苗的毒性及机理探究

徐亚楠, 徐立娜. 石墨烯对高等植物幼苗的毒性及机理探究[J]. 生态毒理学报, 2020, 15(1): 220-229. doi: 10.7524/AJE.1673-5897.20190711001
引用本文: 徐亚楠, 徐立娜. 石墨烯对高等植物幼苗的毒性及机理探究[J]. 生态毒理学报, 2020, 15(1): 220-229. doi: 10.7524/AJE.1673-5897.20190711001
Xu Yanan, Xu Lina. Phytotoxicity of Graphene to Higher Plants’ Seedlings and Its Mechanisms[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 220-229. doi: 10.7524/AJE.1673-5897.20190711001
Citation: Xu Yanan, Xu Lina. Phytotoxicity of Graphene to Higher Plants’ Seedlings and Its Mechanisms[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 220-229. doi: 10.7524/AJE.1673-5897.20190711001

石墨烯对高等植物幼苗的毒性及机理探究

    作者简介: 徐亚楠(1989-),女,硕士研究生,研究方向为海洋环境生态学,E-mail:yanango@163.com
  • 基金项目:

    国家自然科学基金重大国际合作交流项目(41120134004);青岛市博士后应用项目(861605040062)

  • 中图分类号: X171.5

Phytotoxicity of Graphene to Higher Plants’ Seedlings and Its Mechanisms

  • Fund Project:
  • 摘要: 随着石墨烯产品的广泛应用和潜在的环境释放,其对生态环境的影响已引起广泛关注。为探讨石墨烯对高等植物生长的影响,探究了其对黄瓜幼苗和玉米幼苗生长的影响及其致毒机理。结果表明,水培条件下,不同浓度的石墨烯(10、50、100、500、1 000和2 000 mg·L-1)处理植物幼苗15 d后,对植物幼苗的生长具有抑制作用。且随着处理时间和石墨烯浓度的增加,植物幼苗生长的所有指标,包括根/地上部鲜重和干重、根长、根尖数、株高和叶面积均相应降低。另外,黄瓜幼苗比玉米幼苗对石墨烯更加的敏感。进一步研究发现,石墨烯与黄瓜幼苗根部直接接触导致的物理损伤、氧化损伤,以及营养耗竭是其致毒机理。而石墨烯对玉米幼苗的致毒机理包括物理损伤和营养耗竭。本研究为石墨烯的环境风险评价提供了基础数据。
  • 加载中
  • Geim A K. Graphene:Status and prospects[J]. Science, 2009, 324(5934):1530-1534
    Mittal G, Dhand V, Rhee K Y, et al. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites[J]. Journal of Industrial and Engineering Chemistry, 2015, 21(2):11-25
    Neto A H C, Guinea F, Peres N M R. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1):109
    Luo Z, Zhou M, Weng J. Graphene-based passively Qswitched dual-wavelength erbium-doped fiber laser[J]. Optics Letters, 2010, 35(21):3709-3711
    Zakharchenko K V, Los J H, Katsnelson M I, et al. Atomistic simulations of structural and thermodynamic properties of bilayer graphene[J]. Physical Review B, 2010, 81(23):235439
    Mattevi C, Eda G, Agnoli S, et al. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films[J]. Advanced Functional Materials, 2009, 19(16):2577-2583
    Shareena T P D, McShan D, Dasmahapatra A K, et al. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health[J]. Nanomicro Letters, 2018, 10(3):53
    Xu J, Cao Z, Zhang Y, et al. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water:Preparation, application, and mechanism[J]. Chemosphere, 2018, 195:351-364
    Hu X, Zhou Q. Health and ecosystem risks of graphene[J]. Chemical Reviews, 2013, 113(5):3815-3835
    Begum P, Ikhtiari R, Fugetsu B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce[J]. Carbon, 2011, 49:3907-3919
    Hao Y, Ma C, Zhang Z, et al. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem[J]. Environmental Pollution, 2018, 232:123-136
    Zhang M, Gao B, Chen J. Effects of graphene on seed germination and seedling growth[J]. Journal of Nanoparticle Research, 2015, 17(2):78
    Long Z, Ji J, Yang K, et al. Correction to systematic and quantitative investigation of the mechanism of carbon nanotubeśtoxicity toward algae[J]. Environmental Science and Technology, 2014, 48(8):4634
    钟芬,潘雪江,刘恒全.改良氧化还原法制备石墨烯及其电学性能研究[J].化工新型材料, 2019, 47(4):67-70

    Zhong F, Pan X J, Liu H Q. Preparation of graphene by modified redox and its electrical property[J]. New Chemical Materials, 2019, 47(4):67-70(in Chinese)

    Wang Z Y, Xie X Y, Zhao J, et al. Xylem-and phloembased transport of CuO nanoparticles in maize (Zea mays L.)[J]. Environmental Science and Technology, 2012, 46(8):4434-4441
    王发园.人工纳米颗粒的植物毒性及其在植物中的吸收和累积[J].生态毒理学报, 2012, 7(2):140-147

    Wang F Y. Phytotoxicity of engineered nanoparticles (ENPs) and their uptake and accumulation in plants[J]. Asian Journal of Ecotoxicology, 2012, 7(2):140-147(in Chinese)

    Zhao J, Wang Z Y, White J C, et al. Graphene in the aquatic environment:Adsorption, dispersion, toxicity and transformation[J]. Environmental Science and Technology, 2014, 48(17):9995-10009
    Ganesan P, Kamaraj R, Vasudevan S. Application of isotherm, kinetic and thermodynamic models for the adsorption of nitrate ions on graphene from aqueous solution[J]. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(5):808-814
    Zhao J, Cao X S, Wang Z Y, et al. Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae[J]. Water Research, 2017, 111:18-27
  • 加载中
计量
  • 文章访问数:  2758
  • HTML全文浏览数:  2758
  • PDF下载数:  68
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-07-11
徐亚楠, 徐立娜. 石墨烯对高等植物幼苗的毒性及机理探究[J]. 生态毒理学报, 2020, 15(1): 220-229. doi: 10.7524/AJE.1673-5897.20190711001
引用本文: 徐亚楠, 徐立娜. 石墨烯对高等植物幼苗的毒性及机理探究[J]. 生态毒理学报, 2020, 15(1): 220-229. doi: 10.7524/AJE.1673-5897.20190711001
Xu Yanan, Xu Lina. Phytotoxicity of Graphene to Higher Plants’ Seedlings and Its Mechanisms[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 220-229. doi: 10.7524/AJE.1673-5897.20190711001
Citation: Xu Yanan, Xu Lina. Phytotoxicity of Graphene to Higher Plants’ Seedlings and Its Mechanisms[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 220-229. doi: 10.7524/AJE.1673-5897.20190711001

石墨烯对高等植物幼苗的毒性及机理探究

    作者简介: 徐亚楠(1989-),女,硕士研究生,研究方向为海洋环境生态学,E-mail:yanango@163.com
  • 1. 中国海洋大学海洋环境与生态教育部重点实验室, 青岛 266100;
  • 2. 青岛农业大学园林与林学院, 青岛 266100
基金项目:

国家自然科学基金重大国际合作交流项目(41120134004);青岛市博士后应用项目(861605040062)

摘要: 随着石墨烯产品的广泛应用和潜在的环境释放,其对生态环境的影响已引起广泛关注。为探讨石墨烯对高等植物生长的影响,探究了其对黄瓜幼苗和玉米幼苗生长的影响及其致毒机理。结果表明,水培条件下,不同浓度的石墨烯(10、50、100、500、1 000和2 000 mg·L-1)处理植物幼苗15 d后,对植物幼苗的生长具有抑制作用。且随着处理时间和石墨烯浓度的增加,植物幼苗生长的所有指标,包括根/地上部鲜重和干重、根长、根尖数、株高和叶面积均相应降低。另外,黄瓜幼苗比玉米幼苗对石墨烯更加的敏感。进一步研究发现,石墨烯与黄瓜幼苗根部直接接触导致的物理损伤、氧化损伤,以及营养耗竭是其致毒机理。而石墨烯对玉米幼苗的致毒机理包括物理损伤和营养耗竭。本研究为石墨烯的环境风险评价提供了基础数据。

English Abstract

参考文献 (19)

返回顶部

目录

/

返回文章
返回