-
石油开采、集输及加工过程中形成的油水乳状液组成复杂,呈现多相体系,易对生产过程造成负面影响,如,原油中稳定的乳化混相造成原油脱水困难,影响外输原油品质;油罐、水罐中的油水过渡层难以分离,影响装置处理效率;含油废水破乳困难,混絮凝产生大量高含水油泥需要单独处理处置等。因此,油水乳化状液的有效分离是提高原油品质,减少废物产生量的关键[1-2]。针对乳状液的破乳分离技术已开展大量研究与试验,但随着原油重质、劣质化程度加剧及化学驱油技术大规模应用,油水乳化液分离难度日趋增大。
为高效经济地解决石油开采、集输和加工过程中因乳化引起的各类问题,需进一步认识油水乳状液中各组分对体系稳定的作用机制,从而有针对性地开发破乳分离方法。基于此,本文综述了油水乳状液稳定性的判定依据,梳理了国内外油水乳状液稳定性影响因素研究进展,提出一套油水乳状液稳定性的表征体系,旨在为高效破乳分离技术的开发提供方法参考。
石油石化油水乳状液稳定性表征方法研究进展
Research progress on characterization methods for petrochemical oil-water emulsion stability
-
摘要: 高乳化油水混相液体存在于石油开采、运输、加工以及污染治理等多个生产环节,深入认识乳化稳定性以及混相中各组分对稳定体系的作用机制,对开发经济、高效、清洁的破乳分离方法具有重要意义。本文总结了常用的油水乳化液稳定性判定依据,系统梳理了乳化混相中各类组分物质的表征方法,基于油水乳状液体系稳定性整体宏观评价及重要组分对稳定性的贡献度,提出了一套油水乳状液的稳定性表征方法体系,以期为油水乳状液稳定性研究与破乳技术开发提供基础参考。Abstract: Highly emulsified oil-water miscible liquid is produced in many processes, such as oil exploitation, transportation, processing and oil pollution treatment. A thorough understanding of emulsification stability and the mechanism of each component in the miscible phase on the stability of the system is of great significance for the development of economic, efficient and clean demulsification separation methods. This paper summarized the commonly used criteria for determining the stability of oil-water emulsion, and systematically sorted out the characterization methods of various components in the emulsified mixture. In addition, based on the overall macro evaluation of the stability of oil-water emulsion system and the contribution of important components to the stability, a set of stability characterization method system of the oil-water emulsion was proposed, which was expected to provide a basic reference for the stability research and the demulsification technology for the oil-water emulsion.
-
Key words:
- oil-water emulsion /
- stability /
- characterization method
-
表 1 石油石化生产过程中常见的油水乳化废液种类及其影响因素
油水乳化废液种类 影响因素 油田采出液、采出水 采油过程中加入的大量化学药剂,包括碱、聚合物、表面活性剂 油田作业废液 油田作业过程中使用的化学助剂,注井、干线清洗出的聚合物、表面活性剂等化学药剂 老化油 胶质和沥青质等重组分以及细砂、黏土等固体颗粒含量高,金属硫酸盐类、胶态FeS颗粒等无机助凝剂和修、钻井过程加入的化学助剂残留 原油罐切水 存在油水过渡层,胶质、沥青质含量高,石油开采过程中的化学助剂残留,长距离和长时间运输 电脱盐废水 含有大量表面活性剂,无机盐含量高,采油助剂残留 延迟焦化冷焦废水 焦粉、焦油气、高温过热蒸汽的共同作用产生 表 2 沥青质和胶质的表征方法及技术
表征内容 方法和技术 极性分析表征元素组成 元素分析 X射线光电子能谱(XPS) 特征官能团 傅里叶变换红外光谱(FTIR) 漫反射傅里叶变换红外光谱(DRIFTS) 结构分析表征 X射线衍射(XRD) 氢/碳核磁共振(1H/13C-NMR)负离子电喷雾技术(ESI)结合高分辨傅立叶变换离子回旋共振质谱技术(FT-ICR MS) 沥青质聚集体状态表征 动态核极化技术(DNP) 表 3 蜡的表征方法及技术
表征内容 方法和技术 蜡含量和
组成表征含蜡量 《原油蜡含量的测定:GB/T 26982—2011》 《蒸馏法测定原油中蜡含量:RIPP 5—90》 差示扫描量热法(DSC) 组成和碳数
分布高温气相色谱(HTGC) 蜡结晶
温度表征析蜡点 交叉偏振显微镜(CPM) 差示扫描量热法(DSC) 界面蜡晶
形态表征晶体形态
和结构普通光学显微镜 偏光显微镜 扫描电子显微镜(SEM) X射线衍射(XRD) 表 4 固体颗粒的表征方法及技术
表征内容 方法和技术 颗粒润湿表征 接触角测量法 核磁共振法(NMR) Zeta电位法 颗粒粒度表征 激光衍射法 X射线小角散射法(SAXS) 表 5 驱油剂的表征方法及其技术
表征内容 方法和技术 表/界面张力 毛细管上升法 最大气泡法 吊片法与环法 滴重法与滴体积法 悬滴法 旋滴法 振荡射流法 界面流变性 Langmuir槽法 悬挂滴法 气泡震荡法 旋滴法 界面电性 电泳法 电渗法 流动电位法 电泳光散射法(ELS) 相位分析光散射法(PALS) 表 6 油水乳化混相表征体系框架
表征体系 表征方法 稳定性影响因素 体系整体稳定性评价 瓶试法、离心法、多重光散射法、
临界电场法等- 组分解析 胶质、沥青质 四组分分析 - 环烷酸 FT-ICRMS - 蜡组分 GC-MS - 无机盐离子 IC法、ICP-AES法和ICP-MS法、电导率法 - 化学药剂 色谱与质谱技术 - 性质分析 液滴粒径分布 显微镜观察法、激光衍射法、 - 悬浮固体颗粒粒径分布 激光衍射法和X射线小角散射法(SAXS) - 界面电性(Zeta电位) 电泳光散射法(ELS)、相位分析光散射法(PALS)等 无机盐离子、离子型化学药剂、环烷酸盐以及固体颗粒物质等 界面张力 悬滴法和旋滴法等 胶质、沥青质、表面活性剂等 界面流变性 悬挂滴法、旋滴法和气泡震荡法等 固体颗粒、蜡晶、化学药剂等 -
[1] SAAD M A, KAMIL M, ABDURAHMAN N H, et al. An overview of recent advances in state-of-the-art techniques in the demulsification of crude oil emulsions[J]. Processes, 2019, 7(7): 470. doi: 10.3390/pr7070470 [2] GOODARZI F, ZENDEHBOUDI S. A comprehensive review on emulsions and emulsion stability in chemical and energy industries[J]. Canadian Journal of Chemical Engineering, 2019, 97(1): 281 − 309. doi: 10.1002/cjce.23336 [3] CHEN G, TAO D. An experimental study of stability of oil–water emulsion[J]. Fuel Processing Technology, 2005, 86(5): 499 − 508. doi: 10.1016/j.fuproc.2004.03.010 [4] VERRUTO V J, LE R K, KILPATRICK P K. Adsorption and molecular rearrangement of amphoteric species at oil−water interfaces[J]. The Journal of Physical Chemistry B, 2009, 113(42): 13788 − 13799. doi: 10.1021/jp902923j [5] PERINI N, PRADO A R, SAD C M S, et al. Electrochemical impedance spectroscopy for in situ petroleum analysis and water-in-oil emulsion characterization[J]. Fuel, 2012, 91(1): 224 − 228. doi: 10.1016/j.fuel.2011.06.057 [6] 苑光宇. 化学驱乳化机理及乳化驱油新技术研究进展[J]. 日用化学工业, 2019, 49(1): 44 − 50. doi: 10.3969/j.issn.1001-1803.2019.01.010 [7] DRELICH A, GOMEZ F, CLAUSSE D, et al. Evolution of water-in-oil emulsions stabilized with solid particles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2010, 365(1-3): 171 − 177. doi: 10.1016/j.colsurfa.2010.01.042 [8] ALMEIDA M L, CHARIN R M, NELE M, et al. Stability studies of high-stable water-in-oil model emulsions[J]. Journal of Dispersion Science and Technology, 2016, 38(1): 82 − 88. [9] 朱洲, 康万利, 吴瑞坤, 等. 高盐条件下甜菜碱两亲聚合物乳状液体系的稳定性[J]. 石油化工高等学校学报, 2017, 30(06): 32 − 36. doi: 10.3969/j.issn.1006-396X.2017.06.007 [10] 赵红运, 孙灵辉, 刘卫东, 等. 化学剂浓度对大庆油田乳状液稳定性的影响[J]. 应用化工, 2019, 48(9): 2061 − 2064. doi: 10.3969/j.issn.1671-3206.2019.09.010 [11] WU H, CHEN X, TAN R, et al. Controllable regulation of emulsion stability by a pH-responsive zwitterionic/anionic surfactant system[J]. Fuel, 2022, 312: 122921. doi: 10.1016/j.fuel.2021.122921 [12] ASKE N, KALLEVIK H, SJOBLOM J. Water-in-crude oil emulsion stability studied by critical electric field measurements. Correlation to physico-chemical parameters and near-infrared spectroscopy[J]. Journal of Petroleum Science and Engineering, 2002, 36(1-2): 1 − 17. doi: 10.1016/S0920-4105(02)00247-4 [13] WANG X Y, ALVARADO V. Direct current electrorheological stability determination of water-in-crude oil emulsions[J]. Journal of Physical Chemistry B, 2009, 113(42): 13811 − 13816. doi: 10.1021/jp9030078 [14] BEETGE J H. Emulsion stability studies based on the critical electric field (CEF) technique[J]. Energy & Fuels, 2012, 26(10): 6282 − 6291. [15] BRASIL T A, WATANABE E H, ASSENHEIMER T, et al. Microscope analysis and evaluation of the destabilization process of water-in-oil emulsions under application of electric field[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(3): 8738 − 81. [16] 张维, 李明远, 林梅钦, 等. 电导率与O/W乳状液的稳定性[J]. 石油学报(石油加工), 2008(5): 592 − 597. [17] 倪良, 胡莹海, 吴春笃. 电导法研究环己烷/水/CTAB乳状液的稳定性[J]. 江苏大学学报(自然科学版), 2005(6): 550 − 552. [18] 林炳丞. 高含油污泥的定向催化热解研究[D]. 杭州: 浙江大学, 2020. [19] HOSSEINI A, ZARE E, AYATOLLAHI S, et al. Electrokinetic behavior of asphaltene particles[J]. Fuel, 2016, 178: 234 − 242. doi: 10.1016/j.fuel.2016.03.051 [20] LIU J, ZHANG Y, PENG K, et al. A review of the interfacial stability mechanism of aging oily sludge: Heavy components, inorganic particles, and their synergism[J]. Journal of Hazardous Materials, 2021, 415: 125624. doi: 10.1016/j.jhazmat.2021.125624 [21] MCLEAN J D, KILPATRICK P K. Effects of asphaltene aggregation in model heptane–toluene mixtures on stability of water-in-oil emulsions[J]. Journal of Colloid and Interface Science, 1997, 196(1): 23 − 34. doi: 10.1006/jcis.1997.5177 [22] SPIECKER P M, GAWRYS K L, KILPATRICK P K. Aggregation and solubility behavior of asphaltenes and their subfractions[J]. Journal of Colloid and Interface Science, 2003, 267(1): 178 − 193. doi: 10.1016/S0021-9797(03)00641-6 [23] ZAKI N, SCHORIING P C, RAHIMIAN I. Effect of asphaltene and resins on the stability of water-in-waxy oil emulsions[J]. Petroleum Science and Technology, 2000, 18(7-8): 945 − 963. doi: 10.1080/10916460008949884 [24] SPIECKER P M, GAWRYS K L, TRAIL C B, et al. Effects of petroleum resins on asphaltene aggregation and water-in-oil emulsion formation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 220(1-3): 9 − 27. [25] WANG H, XU H, JIA W, et al. Revealing the intermolecular interactions of asphaltene dimers by quantum chemical calculations[J]. Energy & Fuels, 2017, 31(3): 2488 − 2495. [26] ALBOUDWAREJ H, POLE D, SVRCEK W Y, et al. Adsorption of asphaltenes on metals[J]. Industrial & Engineering Chemistry Research, 2005, 44(15): 5585 − 5592. [27] EKHOLM P, BLOMBERG E, CLAESSON P, et al. A quartz crystal microbalance study of the adsorption of asphaltenes and resins onto a hydrophilic surface[J]. Journal of Colloid and Interface Science, 2002, 247(2): 342 − 350. doi: 10.1006/jcis.2002.8122 [28] YANG X, VERRUTO V J, KILPATRICK P K. Dynamic asphaltene−resin exchange at the oil/water interface: Time-dependent W/O emulsion stability for asphaltene/resin model oils[J]. Energy & Fuels, 2007, 21(3): 1343 − 1349. [29] HEMMATI-SARAPARDEH A, DABIR B, AHMADI M, et al. Toward mechanistic understanding of asphaltene aggregation behavior in toluene: The roles of asphaltene structure, aging time, temperature, and ultrasonic radiation[J]. Journal of Molecular Liquids, 2018, 264: 410 − 424. doi: 10.1016/j.molliq.2018.04.061 [30] SOULGANI B S, REISI F, NOROUZI F. Investigation into mechanisms and kinetics of asphaltene aggregation in toluene/n-hexane mixtures[J]. Petroleum Science, 2019, 17(2): 457 − 466. [31] 刘广豪, 徐心茹, 袁佩青, 等. 胶质对沥青质稳定性的影响[J]. 石油炼制与化工, 2020, 51(10): 70 − 76. doi: 10.3969/j.issn.1005-2399.2020.10.018 [32] ZOJAJI I, ESFANDIARIAN A, TAHERI-SHAKIB J. Toward molecular characterization of asphaltene from different origins under different conditions by means of FT-IR spectroscopy[J]. Advances in Colloid and Interface Science, 2021, 289: 102314. doi: 10.1016/j.cis.2020.102314 [33] 薛慧勇. 沥青质和胶质对含蜡油胶凝特性的影响及其机理研究[D]. 北京: 中国石油大学(北京), 2020. [34] KIRIMLI H E. Determining the interaction and characterization of asphaltene in alkylbenzene solvents using nuclear-electron double resonance[J]. Journal of Dispersion Science and Technology, 2016, 38(4): 498 − 505. [35] 李明远, 俎永平. 原油乳状液稳定性研究(蜡与原油乳状液稳定性)[J]. 油田地面工程, 1997(2): 1 − 5. [36] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 原油蜡含量的测定: GB/T 26982—2011[S]. 北京: 中国标准出版社, 2011. [37] 代佳林. 胶质和沥青质对含蜡模拟油胶凝特性影响的研究[D]. 北京: 中国石油大学(北京), 2019. [38] ZHU H, LI C, FAN Y, et al. A novel heterogeneous wax deposit structure triggered by polyethylene vinyl acetate (EVA) wax inhibitors[J]. Journal of Dispersion Science and Technology, 2019, 41(13): 2002 − 2013. [39] GAO X D, HUANG Q Y, ZHANG X, et al. Study on wax precipitation characteristics of wax deposit in pipes[J]. Canadian Journal of Chemical Engineering, 2020, 98(5): 1202 − 1210. doi: 10.1002/cjce.23690 [40] SZUMAŁA P, LUTY N. Effect of different crystalline structures on W/O and O/W/O wax emulsion stability[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 499: 131 − 140. [41] PARK B G, HA C S. The properties of oil–wax gels with changing lattice structure of wax crystal[J]. Molecular Crystals and Liquid Crystals, 2012, 569(1): 143 − 50. doi: 10.1080/15421406.2012.697420 [42] GUTHRIE S E, MAZZANTI G, STEER T N, et al. Anin situmethod for observing wax crystallization under pipe flow[J]. Review of Scientific Instruments, 2004, 75(4): 873 − 837. doi: 10.1063/1.1666991 [43] 宋先雨, 方申文, 陶俊, 等. 环烷酸对原油乳状液稳定性影响的研究进展[J]. 精细石油化工, 2015, 32(1): 47 − 52. doi: 10.3969/j.issn.1003-9384.2015.01.012 [44] 兰建义, 杨敬一, 徐心茹. 含硫含酸原油加工中含油污水的形成与破乳研究[J]. 环境科学与技术, 2010, 33(12): 120 − 123. [45] BRANDAL O, SJOBLOM J. Interfacial behavior of naphthenic acids and multivalent cations in systems with oil and water. II: Formation and stability of metal naphthenate films at oil‐water interfaces[J]. Journal of Dispersion Science and Technology, 2005, 26(1): 53 − 58. doi: 10.1081/DIS-200040145 [46] ARLA D, SINQUIN A, PALERMO T, et al. Influence of pH and water content on the type and stability of acidic crude oil emulsions[J]. Energy & Fuels, 2007, 21(3): 1337 − 1342. [47] KILPATRICK P K. Water-in-crude oil emulsion stabilization: Review and unanswered questions[J]. Energy & Fuels, 2012, 26(7): 4017 − 4026. [48] HORVATH-SZABO G, CZARNECKI J, MASLIYAH J. Liquid crystals in aqueous solutions of sodium naphthenates[J]. Journal of Colloid and Interface Science, 2001, 236(2): 233 − 241. doi: 10.1006/jcis.2000.7412 [49] HORVATH-SZABO G, CZARNECKI J, MASLIYAH J H. Sandwich structures at oil-water interfaces under alkaline conditions[J]. Journal of Colloid and Interface Science, 2002, 253(2): 427 − 434. doi: 10.1006/jcis.2002.8524 [50] 张振, 胡芳芳, 张玉贞. 渤海原油环烷酸分布与组成结构[J]. 中国石油大学学报(自然科学版), 2010, 34(5): 174 − 178. [51] 杨敬一, 何萧, 蔡海军, 等. 风城稠油中石油酸组成结构分析[J]. 石油炼制与化工, 2017, 48(2): 106 − 112. doi: 10.3969/j.issn.1005-2399.2017.02.020 [52] BRUNSWICK P, SHANG D Y, VAN AGGELEN G, et al. Trace analysis of total naphthenic acids in aqueous environmental matrices by liquid chromatography/mass spectrometry-quadrupole time of flight mass spectrometry direct injection[J]. Journal of Chromatography A, 2015, 1405: 49 − 71. doi: 10.1016/j.chroma.2015.05.048 [53] ROWLAND S J, WEST C E, SCARLETT A G, et al. Monocyclic and monoaromatic naphthenic acids: synthesis and characterisation[J]. Environmental Chemistry Letters, 2011, 9(4): 525 − 533. doi: 10.1007/s10311-011-0314-6 [54] ROWLAND S J, SCARLETT A G, JONES D, et al. Diamonds in the rough: Identification of individual naphthenic acids in oil sands process water[J]. Environmental Science & Technology, 2011, 45(7): 3154 − 3159. [55] HINDLE R, NOESTHEDEN M, PERU K, et al. Quantitative analysis of naphthenic acids in water by liquid chromatography-accurate mass time-of-flight mass spectrometry[J]. Journal of Chromatography A, 2013, 1286: 166 − 174. doi: 10.1016/j.chroma.2013.02.082 [56] 刘靖新, 曹青, 修远, 等. 克拉玛依九区原油中石油酸分子的表征[J]. 石油化工, 2018, 47(7): 734 − 740. doi: 10.3969/j.issn.1000-8144.2018.07.015 [57] 孙娜娜, 敬加强, 丁晔, 等. 无机盐阴阳离子对稠油水包油型乳状液稳定性的影响[J]. 化工进展, 2015, 34(8): 3118 − 3123. doi: 10.16085/j.issn.1000-6613.2015.08.034 [58] 王彦玲, 任金恒, 金家锋, 等. 无机盐对石油磺酸钠乳状液的性能和微观状态的影响[J]. 精细石油化工, 2017, 34(4): 31 − 35. doi: 10.3969/j.issn.1003-9384.2017.04.008 [59] 任金恒, 王彦玲, 王坤, 等. 无机盐对O/W乳状液可逆转相和稳定性的影响[J]. 应用化工, 2017, 46(5): 809 − 819. doi: 10.3969/j.issn.1671-3206.2017.05.001 [60] SUN Z, PU W, ZHAO R, et al. Study on the mechanism of W/O emulsion flooding to enhance oil recovery for heavy oil reservoir[J]. Journal of Petroleum Science and Engineering, 2022, 209: 109899. doi: 10.1016/j.petrol.2021.109899 [61] AKTER F, SAITO S, TASAKI-HANDA Y, et al. Partition/ion-exclusion chromatographic ion stacking for the analysis of trace anions in water and salt samples by ion chromatography[J]. Analytical Sciences, 2018, 34(3): 369 − 373. doi: 10.2116/analsci.34.369 [62] 施超欧, 姚宝龙, 胡咪, 等. 离子转换色谱-紫外检测法测定啤酒中的无机阴离子和有机酸[J]. 色谱, 2016, 34(10): 951 − 955. [63] GRIFFITH C, DAIGLE H. A comparison of the static and dynamic stability of Pickering emulsions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 586: 124256. doi: 10.1016/j.colsurfa.2019.124256 [64] SAUKOWSKI D M, YARRANTON H W. Oilfield solids and water-in-oil emulsion stability[J]. Journal of Colloid and Interface Science, 2005, 285(2): 821 − 833. doi: 10.1016/j.jcis.2004.12.029 [65] MAAREF S, KANTZAS A, BRYANT S L. The effect of silanization assisted nanoparticle hydrophobicity on emulsion stability through droplet size distribution analysis[J]. Chemical Engineering Science, 2019, 201: 175 − 190. doi: 10.1016/j.ces.2019.02.034 [66] KRUGLYAKOV P M, NUSHTAYEVA A V. Investigation of the influence of capillary pressure on stability of a thin layer emulsion stabilized by solid particles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2005, 263(1-3): 330 − 335. doi: 10.1016/j.colsurfa.2005.04.004 [67] 罗许颖, 未碧贵. 特殊润湿性表面的油水分离研究进展[J]. 应用化工, 2021, 50(3): 765 − 768. doi: 10.3969/j.issn.1671-3206.2021.03.042 [68] ALVAREZ J O, SCHECHTER D S. 非常规油气开发中润湿性反转技术的应用[J]. 石油勘探与开发, 2016, 43(5): 764 − 771. [69] SU S, JIANG Z, SHAN X, et al. The wettability of shale by NMR measurements and its controlling factors[J]. Journal of Petroleum Science and Engineering, 2018, 169: 309 − 316. doi: 10.1016/j.petrol.2018.05.067 [70] ALVAREZ J O, SCHECHTER D S. Application of wettability alteration in the exploitation of unconventional liquid resources[J]. Petroleum Exploration and Development, 2016, 43(5): 832 − 840. doi: 10.1016/S1876-3804(16)30099-4 [71] 倪寿亮. 粒度分析方法及应用[J]. 广东化工, 2011, 38(2): 223 − 227. doi: 10.3969/j.issn.1007-1865.2011.02.107 [72] 卢毓华, 王海舟, 李冬玲, 等. 小角X射线散射法对GH4096高温合金中γ′相的尺寸分布分析[J]. 冶金分析, 2021, 41(9): 1 − 10. doi: 10.13228/j.boyuan.issn1000-7571.011369 [73] 周晓蕾. 激光衍射法测定重晶石粉粒度的影响因素研究[J]. 石油化工应用, 2021, 40(5): 112 − 115. doi: 10.3969/j.issn.1673-5285.2021.05.026 [74] TACKIE-OTOO B N, AYOUB MOHAMMED M A, YEKEEN N, et al. Alternative chemical agents for alkalis, surfactants and polymers for enhanced oil recovery: Research trend and prospects[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106828. doi: 10.1016/j.petrol.2019.106828 [75] YU Q, JIANG H, SONG Y, et al. Chemical flooding for enhanced recovery[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2012, 34(5): 478 − 483. doi: 10.1080/15567036.2011.592917 [76] 张和悦, 高清河, 王鉴, 等. 驱油剂对弱碱三元复合驱乳状液稳定性的影响[J]. 科学技术与工程, 2021, 21(36): 15440 − 15445. doi: 10.3969/j.issn.1671-1815.2021.36.019 [77] LI M, XU M, LIN M, et al. The effect of HPAM on crude oil/water interfacial properties and the stability of crude oil emulsions[J]. Journal of Dispersion Science and Technology, 2007, 28(1): 189 − 192. doi: 10.1080/01932690600992829 [78] KANG W, XU B, WANG Y, et al. Stability mechanism of W/O crude oil emulsion stabilized by polymer and surfactant[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2011, 384(1-3): 555 − 560. [79] 李艳红, 王升宝, 常丽萍. 表(界)面张力测定方法的研究进展[J]. 日用化学工业, 2007(2): 102 − 106. doi: 10.3969/j.issn.1001-1803.2007.02.009 [80] HOORFAR M, NEUMANN A W. Axisymmetric drop shape analysis (ADSA) for the determination of surface tension and contact angle[J]. The Journal of Adhesion, 2010, 80(8): 727 − 743. [81] TEN HAVE E S, VDOVIN G. Novel method for measuring surface tension[J]. Sensors and Actuators A:Physical, 2012, 173(1): 90 − 96. doi: 10.1016/j.sna.2011.10.021 [82] 陈双. 不同化学驱油剂与稠油组分间的相互作用和界面流变性质[D]. 北京: 中国石油大学(北京), 2020. [83] STACHURSKI J, MICHAŁEK M. The effect of the ζ potential on the stability of a non-polar oil-in-water emulsion[J]. Journal of Colloid and Interface Science, 1996, 184(2): 433 − 436. doi: 10.1006/jcis.1996.0637 [84] PINTO I, BUSS A. ζ potential as a measure of asphalt emulsion stability[J]. Energy & Fuels, 2020, 34(2): 2143 − 2151. [85] 秦福元. 基于相位分析光散射的Zeta电位测量研究[D]. 淄博: 山东理工大学, 2018. [86] OPEDAL N V D T, SØRLAND G, SJÖBLOM J. Emulsion stability studied by nuclear magnetic resonance (NMR)[J]. Energy & Fuels, 2010, 24(6): 3628 − 3633. [87] BARRABINO A, KELEŞOĞLU S, EFTEKHARDADKHAH M, et al. Enhanced sedimentation and coalescence of petroleum crude oil emulsions by the new generation of environmentally friendly yellow chemicals[J]. Journal of Dispersion Science and Technology, 2017, 38(12): 1677 − 1686. doi: 10.1080/01932691.2015.1004410 [88] HEMMINGSEN P V, SILSET A, HANNISDAL A, et al. Emulsions of heavy crude oils. I: Influence of viscosity, temperature, and dilution[J]. Journal of Dispersion Science and Technology, 2005, 26(5): 615 − 627. doi: 10.1081/DIS-200057671 [89] HANNISDAL A, HEMMINGSEN P V, SILSET A, et al. Stability of water/crude oil systems correlated to the physicochemical properties of the oil phase[J]. Journal of Dispersion Science and Technology, 2007, 28(4): 639 − 652. doi: 10.1080/01932690701283417 [90] JIANG T M, HIRASAKI G, MILLER C, et al. Diluted bitumen water-in-oil emulsion stability and characterization by nuclear magnetic resonance (NMR) measurements[J]. Energy & Fuels, 2007, 21(3): 1325 − 1336. [91] JIANG T, HIRASAKI G J, MILLER C A, et al. Using silicate and pH control for removal of the rag layer containing clay solids formed during demulsification[J]. Energy & Fuels, 2008, 22(6): 4158 − 4164.