-
水体富营养化是我国目前所面临的水体污染领域常见问题之一[1]。其中,造成水体富营养化的主要原因是含氮物质的过量排放。因此,对含氮废水的治理问题迫在眉睫。与传统污水处理厂生物处理工艺相比,人工湿地因造价低廉,工艺运行维护简单,生态稳定等优势,现在已经越来越多地被用于污水处理工艺中[2]。人工湿地通过植物吸收、填料吸附以及湿地系统中的微生物对水体中的氮类物质进行一系列硝化、反硝化作用,使含氮化合物转变为氮气从水体中释放出去[3]。在反硝化过程中,碳源是作为微生物脱氮的主要能量来源和电子供体[4]。反硝化过程中碳源不足的问题严重制约了湿地系统的脱氮效率。所以,在进行人工湿地脱氮时,要保证水体中有足够的溶解性有机碳。
利用植物碳源提高人工湿地脱氮效果的应用研究
Application of plant carbon source to improve nitrogen removal in constructed wetlands
-
摘要: 碳源不足已成为限制人工湿地脱氮的重要因素,植物材料因其经济易得、安全有效的特点,被广泛用作人工湿地脱氮的外加碳源。文章从天然植物材料的处理、利用方式、脱氮效果等方面研究了其作为人工湿地外加碳源的脱氮机理和脱氮效果,为提高人工湿地脱氮效率提供科学依据及建议。最后,归纳了该研究存在的主要问题,并对今后的发展方向进行了展望。Abstract: Nitrogen removal in the constructed wetland was mainly restricted by the insufficient carbon source. Plant materials were utilized as the additional carbon sources in nitrogen removal of the constructed wetland, considering its economic, available, safe and effective properties. This paper mainly studied the denitrification mechanism and the effect of the natural plant materials as the additional carbon sources in the constructed wetland from the aspects of treatment, utilization mode and denitrification effect, and provided scientific basis and suggestions to improve the nitrogen removal. Finally, the main problems existing in the research field were concluded and the development trends were prospected.
-
Key words:
- constructed wetlands /
- plant carbon source /
- low C/N /
- denitrification /
- chemical modification
-
[1] WANG B D, XIN M, WEI Q S, et al. A historical overview of coastal eutrophication in the china seas[J]. Marine Pollution Bulletin, 2018, 136: 394 − 400. doi: 10.1016/j.marpolbul.2018.09.044 [2] LEE B H, SCHOLZ M. What is the role of phragmites australis in experimental constructed wetland filters treating urban runoff[J]. Ecological Engineering, 2006, 29(1): 87 − 95. [3] VYMAZAL J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007, 380(1−3): 48 − 65. doi: 10.1016/j.scitotenv.2006.09.014 [4] SI Z H, SONG X S, WANG Y H, et al. Intensified heterotrophic denitrification in constructed wetlands using four solid carbon sources: denitrification efficiency and bacterial community structure[J]. Bioresource Technology, 2018, 267: 416 − 425. doi: 10.1016/j.biortech.2018.07.029 [5] SHEN Z Q, ZHOU Y X, LIU J, et al. Enhanced removal of nitrate using starch/PCL blends as solid carbon source in a constructed wetland[J]. Bioresource Technology, 2015, 175: 239 − 244. doi: 10.1016/j.biortech.2014.10.006 [6] 联芳, 朱伟, 赵建, 等. 人工湿地处理低碳氮比污染河水时的脱氮机理[J]. 环境科学学报, 2006, 26(11): 1821 − 1827. [7] RUSTIGE H, NOLDE E. Nitrogen elimination from landfill leachates using an extra carbon source in subsurface flow constructed wetlands[J]. Water Science and Technology, 2007, 56(3): 125 − 133. doi: 10.2166/wst.2007.506 [8] 肖蕾, 贺锋, 梁雪, 等. 不同碳源添加量对垂直流人工湿地污水处理效果的影响[J]. 环境工程学报, 2013, 7(6): 2074 − 2080. [9] HUETT D O, MORRIS S G, SMITH G, et al. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands[J]. Water Research, 2005, 39(14): 3259 − 3272. doi: 10.1016/j.watres.2005.05.038 [10] 张辉鹏, 李思博, 张超杰, 等. 以可生物降解固体为碳源的城市污水厂尾水脱氮研究[J]. 环境工程, 2016, 34(7): 11 − 15. [11] 范振兴, 王建龙. 利用聚乳酸作为反硝化固体碳源的研究[J]. 环境科学, 2009, 30(8): 2315 − 2319. [12] ABU‐GHARARAH Z H. Biological denitrification of high nitrate water: Influence of type of carbon source and nitrate loading[J]. Journal of Environmental Science and Health, Part A, 1996, 31(7): 1651 − 1668. [13] 李洪静, 陈银广, 顾国维. 丙酸/乙酸对低能耗生物除磷脱氮系统的影响[J]. 中国环境科学, 2008, 28(8): 673 − 678. [14] XIONG R, YU X X, YU L J, et al. Biological denitrification using polycaprolactone-peanut shell as slow-release carbon source treating drainage of municipal WWTP[J]. Chemosphere, 2019, 235: 434 − 439. doi: 10.1016/j.chemosphere.2019.06.198 [15] JIA L X, GOU E F, LIU H, et al. Exploring utilization of recycled agricultural biomass in constructed wetlands: characterization of the driving force for high-rate nitrogen removal[J]. Environmental Science & Technology, 2019, 53(3): 1258 − 1268. [16] BOUSSAID F, MARTIN G, MORVAN J. et al. Denitrification in-situ of groundwaters with solid carbon matter[J]. Environmental Technology, 1988, 9(8): 803 − 816. [17] 张羽, 宋永会, 高红杰, 等. 人工湿地反硝化外加固体碳源选择研究[J]. 环境保护科学, 2017, 43(1): 66 − 70. [18] 常宝军, 杨富莹. 人工湿地外加植物碳源强化脱氮的应用探讨[J]. 山西建筑, 2016, 42(12): 108 − 109. [19] 丁怡, 唐海燕, 宋新山, 等. 调控碳氧水平促进人工湿地脱氮的研究进展[J]. 水处理技术, 2019, 45(6): 19 − 22. [20] 赵文莉, 郝瑞霞, 李斌, 等. 预处理方法对玉米芯作为反硝化固体碳源的影响[J]. 环境科学, 2014(3): 987 − 994. [21] 杨平, 刘青松, 石广辉, 等. 稻壳作为缓释碳源及载体的改性研究[J]. 生态科学, 2019, 38(2): 112 − 118. [22] SINGH A, TUTEJA S, SINGH N, et al. Enhanced saccharification of rice straw and hull by microwave-alkali pretreatment and lignocellulolytic enzyme production[J]. Bioresource Technology, 2011, 102(2): 1773 − 1782. doi: 10.1016/j.biortech.2010.08.113 [23] 熊家晴, 孙建民, 郑于聪, 等. 植物固体碳源添加对人工湿地脱氮效果的影响[J]. 工业水处理, 2018, 38(9): 41 − 44. [24] 向衡, 韩 芸, 刘琳, 等. 用于河道水脱氮补充碳源选择研究[J]. 水处理技术, 2013, 39(5): 64 − 68. [25] 赵德华, 吕丽萍, 刘哲, 等. 湿地植物供碳功能与优化[J]. 生态学报, 2018, 38(16): 5961 − 5969. [26] 丁怡, 唐海燕, 俞祺, 等. 利用植物碳源提高人工湿地脱氮效果的研究进展[J]. 工业水处理, 2020, 40(3): 7 − 10. [27] 王琪飞. 不同填料和泥鳅对人工湿地净化能力的影响及机理[D]. 南京: 南京信息工程大学, 2017. [28] 范鹏宇, 于鲁冀, 柏义生, 等. 缓释碳源生态基质对低碳氮比河水脱氮效果研究[J]. 环境科学学报, 2018, 38(1): 251 − 258. [29] 成水平, 王月圆, 吴娟. 人工湿地研究现状与展望[J]. 湖泊科学, 2019, 31(6): 1489 − 1498. [30] WANG W, DING Y, ULLMAN J L, et al. Nitrogen removal performance in planted and unplanted horizontal subsurface flow constructed wetlands treating different influent COD/N ratios[J]. Environmental Science and Pollution Research, 2016, 23(9): 9012 − 9018. doi: 10.1007/s11356-016-6115-5 [31] 晋凯迪, 于鲁冀, 陈涛, 等. 植物碳源调控对人工湿地脱氮效果的影响[J]. 环境工程学报, 2016, 10(10): 5611 − 5616. [32] ZHANG C, YIN Q, WEN Y, et al. Enhanced nitrate removal in self-supplying carbon source constructed wetlands treating secondary effluent: the roles of plants and plant fermentation broth[J]. Ecological Engineering, 2016, 91: 310 − 316. doi: 10.1016/j.ecoleng.2016.02.039 [33] 钟胜强, 杨扬, 陶然, 等. 5种植物材料的水解释碳性能及反硝化效率[J]. 环境工程学报, 2014, 8(5): 1817 − 1824. [34] 丁怡, 宋新山, 严登华. 补充碳源提取液对人工湿地脱氮作用的影响[J]. 环境科学学报, 2012, 32(7): 1646 − 1652. [35] VOLOKITA M, ABELIOVICH A, SOARES M. et al. Denitrification of groundwater using cotton as energy source[J]. Water Science and Technology, 1996, 34(1−2): 379 − 385. doi: 10.2166/wst.1996.0394 [36] SALILING W J B, WESTERMAN P W, LOUORDOT M. Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture and other wastewaters with high nitrate concentrations[J]. Aquacultural Engineering, 2007, 37(3): 222 − 233. doi: 10.1016/j.aquaeng.2007.06.003 [37] ZHANG J M, FENG C P, HONG S Q, et al. Behavior of solid carbon sources for biological denitrification in groundwater remediation[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2012, 65(9): 1696 − 1704. doi: 10.2166/wst.2012.070 [38] SAEED T, MUNTAHA S, RASHID M, et al. Industrial wastewater treatment in constructed wetlands packed with construction materials and agricultural by-products[J]. Cleaner Prod, 2018, 189: 442 − 453. doi: 10.1016/j.jclepro.2018.04.115 [39] ZHAO Y J, ZHANG H, XU C, et al. Efficiency of two-stage combinations of subsurface vertical down-flow and up-flow constructed wetland systems for treating variation in influent C/N ratios of domestic wastewater[J]. Ecological Engineering, 2011, 37(10): 1546 − 1554. doi: 10.1016/j.ecoleng.2011.06.005 [40] FOGLAR L, BRISKI F. Wastewater denitrification process—the influence of methanol and kinetic analysis[J]. Process Biochemistry, 2003, 39(1): 95 − 103. doi: 10.1016/S0032-9592(02)00318-7
计量
- 文章访问数: 2120
- HTML全文浏览数: 2120
- PDF下载数: 18
- 施引文献: 0