-
染料废水进入水体、土壤,会造成饮用水源污染、水生物丧失生命、生态景观恶化、环境质量下降等问题,对人类以及其他生物的生存产生极大的威胁[1]。目前常用于处理染料废水的方法主要有化学法、物理化学法和生物法等,其中以物理化学法中的吸附法应用比较广泛[2-3]。水凝胶作为一种新型的高分子功能材料,其内部含有多种水性基团如羟基、羧基等[4],且具有高膨胀倍率,对染料结晶紫(crystal violet,CV)具有较强的结合能力,水凝胶不仅拥有良好的网络结构[5],而且在水中溶胀又不溶于水[6],水凝胶吸附后极易与液相分离,很大程度上减轻后续的分离工作,是一种十分理想的吸附剂[7]。但水凝胶本身机械强度不高,易破碎,回用较为困难,而木质素具有丰富的官能团结构,且储量丰富、成本低、环境友好和可生物降解,被视为理想的有机聚合物组分[8]。有研究[9]表明,在水凝胶中引入木质素类聚合物,可以形成互穿网络结构,增加吸附位点,进而有效提高其机械强度和吸附效率。为了提高吸附材料的回收利用性,在吸附材料中引入磁性微粒,形成磁性吸附材料,外加磁场即可将其分离[10-11],且加入磁性微粒后,增大了吸附剂的活性位点和比表面积[12],从而更有利于吸附材料的吸附过程。
因此,本研究通过自由基接枝共聚和原位沉淀法制备磁性木质素磺酸钠水凝胶(Fe3O4@LS),探究在各种单因素条件下Fe3O4@LS对CV的吸附性能,并进行吸附动力学和吸附等温线拟合分析,考察其再生性能和共存离子对吸附性能的影响,并对Fe3O4@LS的吸附机理进行了分析。
磁性木质素磺酸钠水凝胶对水中结晶紫的吸附性能
Adsorption performance of crystal violet in water by magnetic sodium lignonate hydrogel
-
摘要: 为了处理染料废水,本研究通过自由基接枝共聚和原位沉淀法制备了磁性木质素磺酸钠水凝胶(Fe3O4@LS),制备工艺简单环保,可实现木质素的高值化利用,且考察了Fe3O4@LS对水中结晶紫(CV)的吸附性能。结果表明,在25 ℃下,Fe3O4@LS投加量为400 mg·L−1、pH=7.0、CV初始浓度为100 mg·L−1、吸附时间80 min时,对结晶紫的平衡吸附量和去除率均达到最大,分别为237.08 mg·g−1和94.83%,Fe3O4@LS对CV的吸附过程符合拟二级动力学方程及Langmuir吸附模型;一价和二价金属离子均会抑制Fe3O4@LS对CV的吸附,Fe3O4@LS具有良好的磁响应性,使其便于回收;再生实验结果表明,Fe3O4@LS是一种具有循环使用潜力的优良生物质吸附材料;构效分析结果表明,Fe3O4@LS的优良吸附性能归因于其充足的活性位点以及丰富的孔洞结构。Abstract: The magnetic sodium lignosulfonate hydrogel (Fe3O4@LS) was prepared through free radical graft copolymerization and in-situ precipitation for the treatment of dye wastewater. The preparation process is simple and environmentally friendly, which could realize the high-value utilization of lignin. The adsorption performance of Fe3O4@LS to crystal violet (CV) in water were investigated. Results demonstrated that at 25 ℃, Fe3O4@LS dosage of 400 mg·L−1, pH 7.0, an initial CV concentration of 100 mg·L−1, and an adsorption time of 80 min, the equilibrium adsorption capacity reached the maximum value of 237.08 237.08 mg·g−1 with the highest CV removal rate of 94.83%. The adsorption behavior followed the pseudo-second-order kinetic equation and Langmuir adsorption model. Both monovalent and divalent metal ions could inhibit CV adsorption on Fe3O4@LS. Moreover, Fe3O4@LS displayed an excellent magnetic response facilitating easy recovery. Regeneration experiments confirmed that Fe3O4@LS is an outstanding biomass adsorbent material with recycling potential. The structure-activity analysis showed that the good adsorption performance of Fe3O4@LS was due to its abundant active sites and pore structures.
-
Key words:
- magnetism /
- lignin /
- hydrogel /
- adsorption /
- crystal violet
-
表 1 LS和Fe3O4@LS水凝胶的结构特征
Table 1. Structure characteristics of the LS and Fe3O4@LS hydrogel
样品 BET表面积/(m2·g−1) 孔隙体积/(cm3·g−1) 平均孔径/nm LS 2.342 2 0.003 975 7.792 3 Fe3O4@LS 3.669 2 0.009 593 10.746 2 表 2 不同浓度CV的动力学模型参数
Table 2. Kinetic model parameters of CV at different concentrations
CCV/
(mg·L−1)Qe,exp
(mg·g−1)拟一级动力学模型 拟二级动力学模型 k1/min−1 Qe,1/(mg·g−1) R2 k2/(g·(mg·min)−1) Qe,2/(mg·g−1) R2 25 60.590 00 0.043 25 30.609 00 0.958 60 0.169 85 63.091 00 0.999 04 50 121.120 00 0.048 25 88.218 00 0.980 10 0.169 08 126.103 00 0.999 13 100 242.090 00 0.042 03 142.124 00 0.973 80 0.166 88 251.880 00 0.999 60 表 3 不同浓度CV的内部扩散模型参数
Table 3. The parameters of internal diffusion model of CV at different concentrations
CCV/
(mg·L−1)内扩散模型参数 0~50 min 50~120 min 120~180 min Ki/(mg·(g·min0.5)−1) P R2 Ki/(mg·(g·min0.5)−1) P R2 Ki/(mg·(g·min0.5)−1) P R2 25 5.398 19.679 0.970 0.848 51.700 0.820 0.039 60.053 0.650 50 11.353 36.549 0.940 1.644 103.416 0.920 0.148 119.175 0.690 100 16.420 109.870 0.990 3.690 202.166 0.760 0.625 233.891 0.710 表 4 不同温度下等温吸附模型的参数
Table 4. Parameters of isothermal adsorption models at different temperatures
温度/K Langmuir参数 Freundlich参数 Temkin参数 Qm/(mg·g−1) KL/(L·mg−1) R2 KF/(mg·mg−1) n R2 α β R2 298 617.280 0 0.140 4 0.996 0 142.999 0 3.354 0 0.840 0 3.108 0 97.940 0 0.914 0 318 588.240 0 0.092 8 0.983 0 139.904 0 3.600 0 0.868 0 3.693 0 85.875 0 0.929 0 338 531.910 0 0.049 3 0.967 0 120.892 0 3.843 0 0.926 0 2.771 0 73.850 0 0.931 0 表 5 不同温度下吸附热力学参数
Table 5. Adsorption thermodynamic parameters at different temperatures
温度/K ∆G/(kJ·mol−1) ∆H/(kJ·mol−1) ∆S/(kJ·(mol·K)−1) 298 −8.399 −0.429 −1.019 318 −7.932 338 −5.507 表 6 共存离子的离子半径、水化半径和有效水化半径[28]
Table 6. Ionic radius, hydration radius and effective hydration radius of coexisting ions[28]
nm 离子 离子半径 水化半径 有效水化半径 Cd2+ 0.083 0.426 0.231 K+ 0.133 0.331 0.278 Na+ 0.098 0.358 0.207 Ca2+ 0.106 0.412 0.245 Mg2+ 0.078 0.428 0.199 表 7 不同材料吸附CV最大吸附量对比
Table 7. Comparison of maximum CV adsorption capacity of different materials
-
[1] 朱明新, 张进雨, 陈贝贝, 等. 磁性壳聚糖微球对酸性嫩黄G吸附行为的研究[J]. 工业水处理, 2023, 43(2): 61-67. [2] WANG T, XUE L, ZHENG L W, et al. Biomass-derived N/S dual-doped hierarchically porous carbon material as effective adsorbent for the removal of bisphenol F and bisphenol S[J]. Journal of Hazardous Materials, 2021, 416: 126126. doi: 10.1016/j.jhazmat.2021.126126 [3] PAL P, PAL A. Treatment of real wastewater: kinetic and thermodynamic aspects of cadmium adsorption onto surfactant-modified chitosan beads[J]. International Journal of Biological Macromolecules, 2019, 131: 1092-1100. doi: 10.1016/j.ijbiomac.2019.03.121 [4] GODIYA C B, LIANG M, SAYED S M, et al. Novel alginate/polyethyleneimine hydrogel adsorbent for cascaded removal and utilization of Cu2+ and Pb2+ ions[J]. Journal of Environmental Management, 2019, 232: 829-841. [5] ZHANG L, SU T, LUO Z R, et al. A graphene-based porous composite hydrogel for efficient heavy metal ions removal from wastewater[J]. Separation and Purification Technology, 2023, 305: 122484. doi: 10.1016/j.seppur.2022.122484 [6] MOHAMED A K, MAHMOUD M E. Nanoscale pisum sativum pods biochar encapsulated starch hydrogel: a novel nanosorbent for efficient chromium (Ⅵ) ions and naproxen drug removal[J]. Bioresource Technology, 2020, 308: 123263. doi: 10.1016/j.biortech.2020.123263 [7] LIU D, GU W Y, ZHOU W Q, et al. Magnetic Fe/carbon/sodium alginate hydrogels for efficient degradation of norfloxacin in simulated wastewater[J]. Journal of Cleaner Production, 2022, 369: 133239. doi: 10.1016/j.jclepro.2022.133239 [8] VANHOLME R, DEMEDTS B, MORREEL K, et al. Lignin biosynthesis and structure[J]. Plant Physiology, 2010, 153(3): 895-905. doi: 10.1104/pp.110.155119 [9] PARK D, KIM J W, SHIN K, et al. Bacterial cellulose nanofibrils-reinforced composite hydrogels for mechanical compression-responsive on-demand drug release[J]. Carbohydrate Polymers, 2021, 272: 118459. doi: 10.1016/j.carbpol.2021.118459 [10] ALMOMANI F, BHOSALE R, KHRAISHEH M, et al. Heavy metal ions removal from industrial wastewater using magnetic nanoparticles (MNP)[J]. Applied Surface Science, 2020, 506: 144924. doi: 10.1016/j.apsusc.2019.144924 [11] LIU X, GUAN J N, LAI G H, et al. Stimuli-responsive adsorption behavior toward heavy metal ions based on comb polymer functionalized magnetic nanoparticles[J]. Journal of Cleaner Production, 2020, 253: 119915. doi: 10.1016/j.jclepro.2019.119915 [12] KLAPISZEWSKI A, ZDARTA J, ANTECKA K, et al. Magnetite nanoparticles conjugated with lignin: A physicochemical and magnetic study[J]. Applied Surface Science, 2017, 422: 94-103. doi: 10.1016/j.apsusc.2017.05.255 [13] CHEN W, XIE H J, JIANG N, et al. Synthesis of magnetic sodium lignosulfonate hydrogel(Fe3O4@LS) and its adsorption behavior for Cd2+ in wastewater[J]. International Journal of Biological Macromolecules, 2023, 245: 125498. doi: 10.1016/j.ijbiomac.2023.125498 [14] JAVADIAN H, ANGAJI M T, NAUSHAD M. Synthesis and characterization of polyaniline/γ-alumina nanocomposite: A comparative study for the adsorption of three different anionic dyes[J]. Journal of Industrial & Engineering Chemistry, 2014, 20(5): 3890-3900. [15] ANSARI R, KEIVANI M B, DELAVAR A F. Application of polyaniline nanolayer composite for removal of tartrazine dye from aqueous solutions[J]. Journal of Polymer Research, 2011, 18(6): 1931-1939. doi: 10.1007/s10965-011-9600-z [16] NETHAJI S, SIVASAMY A. Adsorptive removal of an acid dye by lignocellulosic waste biomass activated carbon: Equilibrium and kinetic studies[J]. Chemosphere, 2011, 82(10): 1367-1372. doi: 10.1016/j.chemosphere.2010.11.080 [17] WANG X Y, CAI J H, ZHANG Y J, et al. Heavy metal sorption properties of magnesium titanate mesoporous nanorods[J]. Journal of Materials Chemistry A, 2015, 3(22): 11796-11800. doi: 10.1039/C5TA02034D [18] XU Q H, WANG Y L, JIN L Q, et al. Adsorption of Cu (Ⅱ), Pb (Ⅱ) and Cr (Ⅵ) from aqueous solutions using black wattle tannin-immobilized nanocellulose[J]. Journal of Hazardous Materials, 2017, 339: 91-99. doi: 10.1016/j.jhazmat.2017.06.005 [19] CHEN X Y, HOSSAIN M F, DUAN C Y, et al. Isotherm models for adsorption of heavy metals from water - a review[J]. Chemosphere, 2022, 307: 135545. doi: 10.1016/j.chemosphere.2022.135545 [20] MAO X Y, WANG L, GU S Q, et al. Synthesis of a three-dimensional network sodium alginate-poly(acrylic acid)/attapulgite hydrogel with good mechanic property and reusability for efficient adsorption of Cu2+ and Pb2+[J]. Environmental Chemistry Letters, 2018, 16(2): 653-658. doi: 10.1007/s10311-018-0708-9 [21] HUA Y Q, JIANG T T, WANG K, et al. Efficient pt-free electrocatalyst for oxygen reduction reaction: highly ordered mesoporous N and S co-doped carbon with saccharin as single-source molecular precursor[J]. Applied Catalysis B:Environmental, 2016, 194: 202-208. doi: 10.1016/j.apcatb.2016.04.056 [22] LI X Z, SHUAI K W, ZHANG Y R, et al. Removal of Cd2+ from wastewater to form a three-dimensional fiber network using si-mg doped industrial lignin-based carbon materials[J]. International Journal of Biological Macromolecules, 2023, 229: 62-69. doi: 10.1016/j.ijbiomac.2022.12.274 [23] FAN X B, WANG X H, CAI Y T, et al. Functionalized cotton charcoal/chitosan biomass-based hydrogel for capturing Pb2+, Cu2+ and MB[J]. Journal of Hazardous Materials, 2022, 423: 127191. doi: 10.1016/j.jhazmat.2021.127191 [24] HU X J, WANG J S, LIU Y G, et al. Adsorption of chromium (Ⅵ) by ethylenediamine-modified cross-linked magnetic chitosan resin: isotherms, kinetics and thermodynamics[J]. Journal of Hazardous Materials, 2011, 185(1): 306-314. doi: 10.1016/j.jhazmat.2010.09.034 [25] DEMIRBAS E, KOBYA M, SULAK M T. Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon[J]. Bioresource Technology, 2008, 99(13): 5368-5373. doi: 10.1016/j.biortech.2007.11.019 [26] 唐丹, 张丽青, 周波, 等. 米曲霉(Aspergillus oryzae)对Pb2+的吸附特性研究[J]. 环境科学与技术, 2013, 36(10): 161-167. [27] 王培, 牛丽丽, 陈灵智. 姜黄素-聚乙烯醇药物凝胶的制备及性能研究[J]. 中国塑料, 2023, 37(7): 34-40. [28] 谢厦, 徐应明, 闫翠侠, 等. 酸碱复合改性海泡石亚结构特征及其对Cd(Ⅱ)吸附性能[J]. 环境科学, 2020, 41(1): 293-303. [29] 陈勇, 程宁, 杨育兵, 等. 物理超声改性膨润土吸附结晶紫染料的性能研究[J]. 工业水处理, 2021, 41(9): 98-103. [30] 姬亚军, 李甜甜, 高培林, 等. 等级孔MFI分子筛的合成及高效吸附结晶紫性能研究[J]. 信阳师范学院学报(自然科学版), 2021, 34(2): 277-282. [31] 廖颖敏, 李晓慧, 蔡婷, 等. 改性榴莲壳对结晶紫的吸附性能研究[J]. 化工新型材料, 2019, 47(8): 228-232. [32] 褚淑祎, 杨敏, 肖继波, 等. 再力花残体活性炭的制备及对结晶紫的吸附[J]. 应用生态学报, 2013(6): 1693-1698. [33] 唐然肖, 李妍, 范胜男, 等. 核桃壳粉对阳离子染料结晶紫的吸附特性[J]. 河北大学学报(自然科学版), 2018, 38(3): 254-261. [34] 高美娜, 唐然肖, 翟焱洲, 等. 磁性介孔碳吸附模拟废水中的结晶紫[J]. 环境工程学报, 2015, 9(10): 4883-4889. [35] YI Y, TU G, YING G, et al. Magnetic biochar derived from rice straw and stainless steel pickling waste liquor for highly efficient adsorption of crystal violet[J]. Bioresource Technology, 2021, 341(1/2): 125743. [36] DRUZIAN S P, ZANATTA N P, BORCHARDT R K, et al. Chitin-psyllium based aerogel for the efficient removal of crystal violet from aqueous solutions[J]. International Journal of Biological Macromolecules, 2021, 179(2): 366-376. [37] 邓燕, 张艺潇, 朱红庆, 等. 磁性硅气凝胶对水中结晶紫的吸附作用[J]. 沈阳药科大学学报, 2018, 35(7): 587-592.