-
硝酸盐是大气颗粒物的重要化学组成,在颗粒物的气候、生态和环境影响中起着至关重要的作用[1-4]。近年来,由于前体物排放量的变化,我国大气颗粒物的化学组成发生巨大改变,硫酸盐浓度己显著降低,而硝酸盐对大气颗粒物的贡献则逐渐增大,并逐步成为我国大气霾污染的重要成因[5-7]。在重污染阶段,硝酸盐在细颗粒物质量浓度中的占比达30%以上[8]。硝酸盐的影响或效应主要与其浓度和粒径分布有关,相关的研究备受关注[9-13]。在 2013 年初的严重霾污染过程中,硝酸盐的细粒径段峰值从清洁天的 0.43~0.65 μm 变为重度污染天的1.1~2.1 μm,这表明积聚模态硝酸盐的吸湿增长和非均相化学生成是霾污染爆发的重要原因[10]。基于碰撞原理的分级采样是研究其粒径分布的普遍方法[14-16]。然而,二次生成硝酸盐是由NOx在大气中发生反应形成HNO3之后,再与NH3气体反应而生成硝酸铵 (NH4NO3) 颗粒物或与已有细颗粒物反应的产物[17]。NH4NO3具有强挥发性,当气温高于30 ℃时主要以气态HNO3和NH3的形式存在[18]。样品采集过程中前体物吸附和NH4NO3 挥发分别会造成颗粒物硝酸盐测定的正负偏差[19]。
在通常情况下,可通过在采样滤膜前置扩散管来确定前体物吸附造成的正偏差[20]。扩散管去除前体物是基于气体的扩散系数远远大于颗粒物,气体分子扩散到管壁上被吸附剂选择吸附,而颗粒物则因扩散系数小而穿过管子,达到被吸附的气体与其他组分分离的目的[21-22]。另一方面,通过采样滤膜后置滤膜来确定硝酸铵挥发造成的负偏差[23]。美国南加州地区的长滩、洛杉矶市中心采样过程中硝酸盐的挥发显著,修正硝酸铵挥发造成的偏差后,PM2.5质量分数增加13%~16%[24]。北京不同季节的PM2.5采样研究表明,后置滤膜收集的硝酸盐占总硝酸盐的19% (冬季)~47% (夏季) [25]。然而,以上研究结果多针对PM2.5、PM10等单一粒径段颗粒物采样,对分粒径段硝酸盐采样的正负偏差估算还未见报道[26]。
鉴于此,本研究以安德森分级采样器为基础,通过采样器前置扩散管和后置滤膜等方法来确定前体物吸附和硝酸铵挥发造成的分粒径段硝酸盐测定正负偏差。以期优化分粒径段硝酸盐的监测方案,提高数据准确性,为后续硝酸盐来源、形成机制、气候环境和健康影响的精细化研究提供参考。
基于分级采样的大气颗粒相硝酸盐浓度测定正负偏差
The deviation in size-resolved atmospheric particulate phase nitrate determination
-
摘要: 为确定前体物吸附和硝酸铵挥发造成的分粒径段硝酸盐测定的正负偏差,基于安德森分级采样器,通过采样器前置扩散管和后置滤膜等方法来确定夏季颗粒相硝酸盐浓度测定的偏差。首先,通过条件实验,确定了夏季采样过程中质量分数5%KOH和10%甘油甲醇为前置扩散管的最佳涂层溶液浓度,其对硝酸气体的吸附率可达到92.1%。前置扩散管串联采样器和单独采样器的同步采样确定了前体物吸附造成的各粒径段硝酸盐正偏差平均值为4.4%±2.6%,0.65~1.1 µm的偏差最大 (为8.4%±4.5%) ,>9µm的偏差最小 (为0.9%±0.6%) ,即细粒径段偏差大于粗粒径段。通过后置滤膜确认了硝酸铵挥发造成的夏季总悬浮颗粒物中硝酸盐测定负偏差为27.5%±10.2%。利用PM1、PM2.5和PM10采样器分别加后置滤膜将这一负偏差分配到不同粒径段,PM1、PM1-2.5和PM2.5-10的硝酸盐负偏差分别为35.6%±8.4%、28.3%±9.3%和14.8%±6.6%。不考虑正负偏差的校正,造成的细颗粒物和粗颗粒物硝酸盐低估比率分别为19.1%±5.6%和10.9%±6.7%,对细颗粒物的低估更多。具体到各个粒径段,<0.43 µm的低估程度最高 (为21.2%±4.4%),4.7~5.8 µm的低估程度最低 (为10.7%±3.7%) 。该研究结果有利于优化分粒径段硝酸盐的监测方案,并提高硝酸盐数据准确性。Abstract: To investigate the deviation in size-resolved nitrate determination, the experiments for determining the optimal concentrations of annular denuders coatings were performed, and size-resolved nitrate samples were collected by a 9-stage Andersen sampler with pre-denuder and post-filter membrane in Beijing in the summer of 2022. The results showed that when the concentration of KOH coating solution was 5%, the removal rate of acid gases in the atmosphere reached 92.1%. The positive deviation caused by precursor absorption was 4.4%±2.6%, the maximum deviation was 8.4%±4.5% in the size fraction of 0.65~1.1 µm, and the minimum deviation was 0.9%±0.6% in the size fraction of >9 µm. The negative deviation of nitrate determination in total suspended particulates caused by volatilization of ammonium nitrate was 27.5%±10.2%. This negative deviation was assigned to different size fractions by using PM1, PM2.5 and PM10 samplers with post-filter membrane, respectively. The negative deviations of nitrate determination were 35.6%±8.4%, 28.3%±9.3% and 14.8%±6.6% in PM1, PM1-2.5 and PM2.5-10, respectively. Without considering the correction of positive and negative deviations, the nitrate underestimation rates of fine and coarse particles were 19.1% and 10.9% respectively. These results are beneficial to optimize the monitoring scheme of nitrate in size-resolved particles and improve the data accuracy.
-
-
[1] PAN Y P , WANG Y S, ZHANG J K, et al. Redefining the importance of nitrate during haze pollution to help optimize an emission control strategy [J]. Atmospheric Environment, 2016, 141: 197-202. [2] LIU J J, MAUZERALL D L, HOROWITZ L W. Evaluating inter-continental transport of fine aerosols: (2) Global health impact[J]. Atmospheric Environment, 2009, 43(28): 4339-4347. doi: 10.1016/j.atmosenv.2009.05.032 [3] SINGH A, DEY S. Influence of aerosol composition on visibility in megacity Delhi[J]. Atmospheric Environment, 2012, 62(1): 367-373. [4] HAN Z W, LI J W, XIA X A, et al. Investigation of direct radiative effects of aerosols in dust storm season over East Asia with an online coupled regional climate-chemistry-aerosol model[J]. Atmospheric Environment, 2012, 54: 688-699. doi: 10.1016/j.atmosenv.2012.01.041 [5] 王跃思, 李文杰, 高文康, 等. 2013~2017年中国重点区域颗粒物质量浓度和化学成分变化趋势[J]. 中国科学:地球科学, 2020, 50(4): 453-468. [6] 刘庆阳, 刘艳菊, 杨峥, 等. 北京城郊冬季一次大气重污染过程颗粒物的污染特征[J]. 环境科学学报, 2014, 34(1): 12-18. [7] LI Z J, Sun Y L, Wang Q Q, et al. Nitrate and secondary organic aerosol dominated particle light extinction in Beijing due to clean air action[J]. Atmospheric Environment, 2022, 269: 118833. doi: 10.1016/j.atmosenv.2021.118833 [8] XU J, CHEN J, ZHAO N, et al. Importance of Ammonia Gas-Particle Conversion Ratio in Haze Formation in the Rural Agricultural Environment[J]. Atmospheric Chemistry and Physics, 2020, 20(12): 7259-7269. doi: 10.5194/acp-20-7259-2020 [9] ZHANG G H, BI X H, CHAN L Y, et al. Size-segregated chemical characteristics of aerosol during haze in an urban area of the Pearl River Delta region, China[J]. Urban Climate, 2013, 4: 74-84. doi: 10.1016/j.uclim.2013.05.002 [10] TIAN S L, PAN Y P, LIU Z R, et al. Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China[J]. Journal of Hazardous Materials, 2014, 279: 452-460. doi: 10.1016/j.jhazmat.2014.07.023 [11] TIAN S L, PAN Y P, WANG Y S. Ion balance and acidity of size-segregated particles during haze episodes in urban Beijing[J]. Atmospheric Research, 2018, 201: 159-167. doi: 10.1016/j.atmosres.2017.10.016 [12] TIAN S L, PAN Y P, WANG Y S. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes[J]. Atmospheric Chemistry and Physics, 2016, 16(6): 9405-9443. [13] BLANCO-ALEGRE C, CALVO A I, ALONSO-BLANCO E, et al. Evolution of size-segregated aerosol concentration in NW Spain: A two-step classification to identify new particle formation events[J]. Journal of Environmental Management, 2022, 304: 114232. doi: 10.1016/j.jenvman.2021.114232 [14] 田世丽, 潘月鹏, 刘子锐, 等. 不同材质滤膜测量大气颗粒物质量浓度和化学组分的适用性——以安德森分级采样器为例[J]. 中国环境科学, 2014, 34(4): 817-826. [15] HUANG X J, LIU Z R, ZHANG J K, et al. Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing[J]. Atmospheric Research, 2016, 168: 70-79. doi: 10.1016/j.atmosres.2015.08.021 [16] TIAN S L, PAN Y P, WANG J , et al. Concurrent measurements of size-segregated particulate sulfate, nitrate and ammonium using quartz fiber filters, glass fiber filters and cellulose membranes[J]. Atmospheric Environment, 2016, 145: 293-298. [17] STELSON A W, SEINFELD J H. Relative humidity and temperature dependence of the ammonium nitrate dissociation constant[J]. Atmospheric Environment, 1982, 16(5): 983-992. doi: 10.1016/0004-6981(82)90184-6 [18] CHOW J C. Measurement Methods to Determine Compliance with Ambient Air Quality Standards for Suspended Particles[J]. Journal of the Air & Waste Management Association, 1995, 45(5): 320-382. [19] LUO L, PAN Y Y, ZHU R G, et al. Assessment of the seasonal cycle of nitrate in PM2.5 using chemical compositions and stable nitrogen and oxygen isotopes at Nanchang, China [J]. Atmospheric Environment, 2020, 117371. [20] 李红, 王峰威, 邓利群, 等. 环形溶蚀器大气颗粒物采集系统条件实验研究[J]. 中国粉体技术, 2010, 16(1): 89-92. [21] 田世丽, 刘学军, 潘月鹏, 等. 应用扩散管测量霾污染期间大气氮硫化合物浓度的方法[J]. 环境科学, 2017, 38(9): 3605-3609. [22] 王峰威, 李红, 柴发合, 等. 环形溶蚀器大气颗粒物采样系统条件实验研究: 涂层溶液浓度的确定[J]. 中国科技成果, 2009, 10(9): 11-14. [23] 张攀, 仲勉, 管晶晶, 等. 应用溶蚀器/后置膜系统分析上海大气PM2.5中水溶性离子的组成及采样误差[J]. 地球化学, 2013, 42(3): 197-204. [24] CHRISTOFOROU C S, SALMON L G, HANNIGAN M P, et al. Trends in fine particle concentration and chemical composition in southern California[J]. J Air Waste Manage, 2011, 50(1): 43-53. [25] HE K B, YANG F M, MA Y L, et al. The characteristics of PM2.5 in Beijing, China[J]. Atmospheric Environment, 2001, 35(29): 4959-4970. doi: 10.1016/S1352-2310(01)00301-6 [26] 杨复沫, 段凤魁, 贺克斌. PM2.5的化学物种采样与分析方法[J]. 中国环境监测, 2004(5): 14-20. [27] 田世丽, 竺夏英, 潘月鹏, 等. 华北玉米农田大气/植被界面氨气和铵盐动态变化研究[J]. 农业环境科学学报, 2018, 37(10): 2327-2333.