-
城市地表径流是受纳水体氮污染的主要来源,耦合城市化水文效应是导致城市水体黑臭、富营养化与水生态受损的重要原因[1]。为减轻城市化对流域水文、环境和水生态的负面影响,新一代城市地表径流低影响开发措施应运而生 (low impact development,LID) [2]。生物滞留是LID的典型代表,耦合土壤-植物-微生物作用收集、处理不透水地表产生的径流,通过渗滤、蒸散发,不仅能有效减少地表径流水量,而且具有去除污染物的功能[3]。
2014年以来,为了解决快速城市化导致的雨洪及地表径流污染,我国提出建设“海绵城市”的自然解决方案[4]。全国已有30个城市开展并完成海绵城市建设试点,以生物滞留设施为代表的海绵措施被推广应用。野外监测表明生物滞留能有效去除地表径流中磷、重金属、石油烃等污染物[2],但是对氮素去除变化范围很大[5-7]。生物滞留对城市地表径流氮污染去除的不确定与多种形态氮素复杂的生物地球化学转化过程有关[8]。带负电荷的NO3-和NO2-在土壤中易淋溶迁移,很难滞留去除。相反,其他形态氮,如PON能被土壤物理截留,但是随后在土壤基质好氧条件下发生矿化、氨化和硝化为NO3-,在后续降雨期淋溶输出[9]。反硝化是微生物厌氧呼吸形式,通过多种酶 (编码基因 narG/napA、nirS/nirK、norB和nosZ) 将NO3-逐步催化还原为惰性氮气,是从土壤或水体中永久去除NO3-的主要途径[10]。
目前,生物滞留设计研究主要集中于优化植物种植、土壤基质组成、饱和区设计和添加碳源,增加对城市地表径流氮素的去除效率[11-13],但缺乏对建成生物滞留设施硝酸盐去除功能与反硝化功能菌群的研究。CHEN等[14]和MOGHADAM等[15]都对单个已建生物滞留反硝化功能基因的研究表明,生物滞留表层基质中反硝化功能基因主要分布在植物根层0~15 cm或0~20 cm,且土壤基质的淹水或饱和时间和有机碳含量影响反硝化菌群丰度。HUANG等[16]在室内采用生物滞留模拟柱研究,发现种植植物根系可明显提高生物滞留土壤基质表层 (0~25 cm) 反硝化功能基因nirS和nosZ丰度,设置饱和区,特别是同时添加碳源 (块) 显著增加nirS和nosZ丰度,能明显提高硝酸盐的去除效率。因此,生物滞留土壤基质组成、种植植物以及进水负荷 (汇流比) 决定基质水分状况、水力停留时间及碳源的可利用性等,可能影响反硝化菌群丰度与活性,进而影响硝酸盐的去除作用。
本研究选择常德市15个土壤基质组成与汇流比不同的已建成生物滞留设施,测定土壤基质反硝化潜势与功能基因 (narG/napA、nirS/nirK、norB和nosZ) 丰度,研究并揭示生物滞留土壤质地与汇流比对微生物反硝化潜势与功能群组成的影响机制,以期为提高城市地表径流氮污染去除的工程设计提供参考。
生物滞留土壤质地与汇流比对微生物硝化、反硝化过程的影响
Effects of soil media texture and watershed area ratio on microbial nitrification and denitrification in established bioretention systems
-
摘要: 生物滞留是工程设计的土壤-植物-微生物共同作用的系统,可有效收集和处理城市地表径流。但是,对城市地表径流氮污染去除变化范围大。由于缺乏直接定量生物滞留反硝化微生物丰度和活性以及工程设计的影响,限制了提高氮去除的工程设计优化。我们在海绵城市建设试点常德选择了15个土壤基质质地和汇流比设计不同的生物滞留设施 (湿式生物滞留和干式生物滞留) ,通过采集土壤基质,测定生物滞留土壤基质反硝化潜势 (DEA) 和硝化潜势 (PN) ,采用qPCR定量硝化基因 (amoA) 和反硝化基因 (narG、napA、nirS、nirK、norB和nosZ) 丰度,研究生物滞留土壤质地与汇流比对微生物硝化与反硝化过程的影响。结果表明,生物滞留土壤质地与汇流比对土壤基质微生物反硝化潜势与反硝化功能基因丰度具有重要的影响。土壤基质为粘壤土和高汇流比设计的湿式生物滞留微生物反硝化功能基因与反硝化潜势显著高于壤土基质与低汇流比的干式生物滞留。湿式和干式生物滞留DEA分别为2.47 mg·kg−1·h−1和0.17 mg·kg−1·h−1,总反硝化功能基因丰度分别为1.80×109 copies·g−1和5.70×108 copies·g−1。土壤基质反硝化菌群与反硝化潜势随基质粘粒含量和汇流比升高而增加。滞水设计或处于饱和淹水状况明显可提高微生物反硝化功能。另外,微生物反硝化功能基因丰度与反硝化潜势也与土壤基质中有机碳和TN呈明显正相关。通过改进生物滞留工程设计可增加反硝化作用并减少氮向受纳水体的输出。本研究结果可为提高城市地表径流氮污染去除效果提供工程案例参考。Abstract: Bioretention systems (BRs) are systems of interaction of soil, plants, and microorganisms, designed to intercept stormwater runoff and reduce loads of water and contaminants discharged to surface waters. However, nitrogen removal efficiency is highly variable, which may be related to the nitrogen complex biogeochemical process that occur within bioretention systems. The nitrogen performance cannot be enhanced by a lack of data directly quantifying the abundance or activity of denitrifying microorganisms in BRs and how they are controlled by engineered designs. Six wet and nine dry bioretention cells (WBRs and DBRs) of different engineered designs in Changde City, including soil media texture and watershed area ratio, were sampled to measure potential nitration (PN) and denitrification enzyme activity (DEA). Nitrification gene (amoA) and denitrification genes (narG, napA, nirS, nirK, norB and nosZ) were also quantified by the quantitative polymerase chain reaction (qPCR). Results showed that BRs design factors, including soil media texture and watershed area ratio, had the greatest effects on variation in denitrifier abundance and activity. Denitrifying populations and denitrification potential increased with soil media clay content and watershed area ratio. Denitrification potential was higher in the wet bioretention systems (2.47 mg·kg−1·h−1 ) compared to dry bioretention systems (0.17 mg·kg−1·h−1 ). The WBRs also had significantly greater total denitrification genes copies than the dry WBRs, 1.80×109 vs 5.70×108 copies·g−1 , respectively. Furthermore, denitrifying populations and denitrification potential increased with soil organic carbon and nitrogen concentrations. These results suggest that soil media texture and watershed area ratio improvement still have great potential when building bioretention systems that can enhance denitrification and reduce nitrogen loading to receiving waters.
-
表 1 湿式和干式生物滞留设施的人工种植土组成与汇流比
Table 1. Soil media texture and watershed area ratio in the wet and dry bioretention cells
设施类型 n 汇流比 土壤质地 种植植物 滞水情况 湿式生物滞留 6 >10 粘质壤土
粘粒19.5±1.6%,
砂粒13.0±3.9%沟叶结缕草 降雨期和间隔期存在滞水,或保持湿润状态 干式生物滞留 9 4~6 壤土
粘粒14.7±0.5%,
砂粒26.2±4.5%沟叶结缕草 降雨期无明显滞水,间隔期保持干燥状态 道路隔离带绿地 6 — 粘质壤土/壤土 沟叶结缕草 不收集、处理地表径流 表 2 硝化功能基因和反硝化功能基因qPCR引物与反应条件
Table 2. Primer of nitrification and denitrification genes used for qPCR
微生物种群 基因 序列信息 (5’-3’) 反应条件 硝化细菌 amoA GGGGTTTCTACTGGTGGT
CCCCTCKGSAAAGCCTTCTTC95 ℃,30 s;95 ℃,15 s,50个循环;60 ℃,30 s;72 ℃,30 s 反硝化细菌 napA GTY ATG GAR GAA AAA TTC AA
GAR CCG AAC ATG CCR AC95 ℃,3 min;95 ℃,20 s,40个循环;60 ℃,1 min;72 ℃,30 s narG TAYGTSGGGCAGGARAAACTG
CGTAGAAGAAGCTGGTGCTGT95 ℃,3 min;95 ℃,15 s,45个循环;60 ℃,1 min;72 ℃,30 s nirK ATYGGCGGVAYGGCGA
GCCTCGATCAGRTTRTGGTT95 ℃,30 s;95 ℃,10 s,40个循环;65 ℃,30 s;72 ℃,30 s nirS AACGYSAAGGARACSGG
GASTTCGGRTGSGTCTTSAYGAA95 ℃,30 s;95 ℃,10 s,40个循环;65 ℃,30 s;72 ℃,30 s norB GACAAGNNNTACGGTGGT
GAANCCCCANACNCCNGC95 ℃,30 s;95 ℃,10 s,40个循环;50 ℃,30 s;72 ℃,30 s nosZ CGYTGTTCMTCGACAGCCAG
CGSACCTTSTTGCCSTYGCG95 ℃,30 s;95 ℃,10 s,40个循环;65 ℃,30 s;72 ℃,30 s 表 3 湿式生物滞留 (WBRs) 、干式生物滞留 (DBRs) 和隔离带绿地 (CTRs) 土壤基质理化性质比较
Table 3. Physical and chemical characteristics of the wet/dry bioretention cells and road medians
设备类型 n pH MC SOC/(g·kg−1) TN/(g·kg−1) [NO2−-N]/(g·kg−1) [NO3−-N]/(g·kg−1) [NH4+-N]/(g·kg−1) 湿式生物滞留 6 7.48±0.10 37.4 %±3.4%a 38.46±3.68a 2.30±0.36a 0.06±0.01a 15.34±2.34a 1.32±0.22 干式生物滞留 9 7.59±0.07 16.2 %±1.1%b 17.18±0.68b 1.11±0.08b 0.04±0.01b 10.57±1.34a 0.94±0.07 道路隔离绿地 6 7.59±0.11 15.7%±1.4%b 11.18±3.08b 1.04±0.81b 0.01±0.00b 1.23±0.59b 1.55±0.29 表 4 湿式生物滞留、干式生物滞留及隔离带绿地土壤基质硝化、反硝化功能基因方差分析
Table 4. Analysis of Variance Results for nitrification and denitrification gene copies among the wet/dry bioretention cells and road medians
功能基因种类及项目 p 湿式生物滞留 干式生物滞留 道路隔离带 amoA 0.085 NA NA NA narG <0.01 a b b napA <0.01 a b b nirS <0.001 a b b nirK 0.084 NA NA NA nosZ <0.01 a ab b 反硝化基因丰度和 <0.001 a b b 表 5 生物滞留硝化、反硝化功能基因丰度与土壤基质组成 (含砂量) 和汇流比以及环境因子的相关性分析
Table 5. Spearman's correlation coefficients between nitrification/denitrification gene copies and soil media texture /watershed area ratio and environmental controls in the bioretention cells
功能基因种类及项目 pH MC TN NO2−−N NH4+−N NO3−−N SOC 汇流比 砂含量 DEA PN narG −0.23 0.74** 0.82*** 0.29 0.41 0.66** 0.74** 0.68* −0.19 0.77*** 0.59* napA −0.23 0.81*** 0.83*** 0.59* 0.49 0.69** 0.81*** 0.72** −0.16 0.78*** 0.67** nirK −0.47 0.48 0.56* 0.30 0.61* 0.34 0.42 0.23 −0.22 0.65* 0.25 nirS −0.37 0.79*** 0.86*** 0.52* 0.36 0.68** 0.88*** 0.88*** −0.31 0.82*** 0.79*** nosZ −0.033 0.44 0.42 0.099 0.53* 0.11 0.34 0.31 −0.40 0.59* 0.22 amoA −0.10 0.33 0.63* 0.35 −0.21 0.58* 0.63* 0.45 −0.15 0.45 0.59* DEA −0.48 0.87*** 0.91*** 0.52* 0.61* 0.67** 0.89*** 0.81*** −0.51* − 0.70** PN −0.33 0.74*** 0.85*** 0.67** 0.24 0.70** 0.88*** 0.64** −0.25 0.70** − 注:***P<0.001;** 0.001<P<0.01;* 0.01<P<0.05;数字代表Pearson相关系数r。 -
[1] PAMURU S T, FORGIONE E, CROFT K, et al. Chemical characterization of urban stormwater: Traditional and emerging contaminants[J]. Science of The Total Environment, 2022, 813: 151887. doi: 10.1016/j.scitotenv.2021.151887 [2] ECKART K, MCPHEE Z, BOLISETTI T. Performance and implementation of low impact development – A review[J]. Science of The Total Environment, 2017, 607-608: 151887. [3] DAVIS A P, HUNT W F, TRAVER R G, et al. Bioretention technology: Overview of current practice and future needs[J]. Journal of Environmental Engineering, 2009, 135(3): 109-117. doi: 10.1061/(ASCE)0733-9372(2009)135:3(109) [4] JIANG C B, LI J K, HU Y H, et al. Construction of water-soil-plant system for rainfall vertical connection in the concept of sponge city: A review[J]. Journal of Hydrology, 2022, 605: 127327. doi: 10.1016/j.jhydrol.2021.127327 [5] JIANG C B, LI J K, LI H, et al. Low-impact development facilities for stormwater runoff treatment: Field monitoring and assessment in Xi'an area, China[J]. Journal of Hydrology, 2020, 585: 124803. doi: 10.1016/j.jhydrol.2020.124803 [6] LOPEZ-PONNADA E V, LYNN T J, ERGAS S J, et al. Long-term field performance of a conventional and modified bioretention system for removing dissolved nitrogen species in stormwater runoff[J]. Water Research, 2020, 170: 115336. doi: 10.1016/j.watres.2019.115336 [7] LINTERN A, MCPHILLIPS L, WINFREY B, et al. Best management practices for diffuse nutrient pollution: Wicked problems across urban and agricultural watersheds[J]. Environmental Science & Technology, 2020, 54(15): 9159-9174. [8] COLLINS K A, LAWRENCET J, STANDER E K, et al. Opportunities and challenges for managing nitrogen in urban stormwater: A review and synthesis[J]. Ecological Engineering, 2010, 36(11): 1507-1519. doi: 10.1016/j.ecoleng.2010.03.015 [9] LI L Q, DAVIS A P. Urban stormwater runoff nitrogen composition and fate in bioretention systems[J]. Environmental science & technology, 2014, 48(6): 3403-3410. [10] BISWAL B, VIJAYARAGHAYAN K, ADAM M, et al. Biological nitrogen removal from stormwater in bioretention cells: a critical review[J]. Critical reviews in biotechnology, 2021: 1-23. [11] 李立青, 胡楠, 刘雨情, 等. 3种生物滞留设计对城市地表径流溶解性氮的去除作用[J]. 环境科学, 2017, 38(5): 1881-1888. doi: 10.13227/j.hjkx.201612215 [12] LI L Q, YANG J M, DAVIS A P, et al. Dissolved inorganic nitrogen behavior and fate in bioretention systems: Role of vegetation and saturated zones[J]. Journal of Environmental Engineering, 2019, 145(11): 04019074. doi: 10.1061/(ASCE)EE.1943-7870.0001587 [13] KONG Z, MA H Y, SONG Y Q, et al. A long term study elucidates the relationship between media amendment and pollutant treatment in the stormwater bioretention system: Stability or efficiency[J]. Water Research, 2022, 225: 119124. doi: 10.1016/j.watres.2022.119124 [14] CHEN X L, PELTIER E, STURM B S M, et al. Nitrogen removal and nitrifying and denitrifying bacteria quantification in a stormwater bioretention system[J]. Water research, 2013, 47(4): 1691-1700. doi: 10.1016/j.watres.2012.12.033 [15] MOGHADAM S V, JAFARZADEH A, MATTA A, et al. Evaluation of nitrogen removal, functional gene abundance and microbial community structure in a stormwater detention basin[J]. Journal of environmental management, 2023, 325: 116669. doi: 10.1016/j.jenvman.2022.116669 [16] HUANG L Q, LUO J Y, LI L Q, et al. Unconventional microbial mechanisms for the key factors influencing inorganic nitrogen removal in stormwater bioretention columns[J]. Water research, 2021, 209: 117895. [17] BETTEZ N D, GROFFMAN P M. Denitrification potential in stormwater control structures and natural riparian zones in an urban landscape[J]. Environmental Science & Technology, 2012, 46(20): 10909-10917. [18] GEETS J, COOMAN M D, WITTEBOLLE L, et al. Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge[J]. Applied Microbiology & Biotechnology, 2007, 75(1): 211-221. [19] LIGI T, TRUU M, TRUU J, et al. Effects of soil chemical characteristics and water regime on denitrification genes (nirS, nirK, and nosZ) abundances in a created riverine wetland complex[J]. Ecological Engineering, 2014, 72: 47-55. doi: 10.1016/j.ecoleng.2013.07.015 [20] 刘妍霁, 刘子恺, 金圣圣, 等. 亚热带森林土壤氨氧化微生物和反硝化微生物功能基因丰度对氮磷输入的响应[J]. 应用生态学报, 2023, 34(3): 639-646. doi: 10.13287/j.1001-9332.202303.005 [21] SKOROBOGATOY A, HE J, CHU A, et al. The impact of media, plants and their interactions on bioretention performance: A review[J]. Science of The Total Environment, 2020, 715: 136918. doi: 10.1016/j.scitotenv.2020.136918 [22] PALTA M M, EHRENFELD J G, GIMENEZ D, et al. Soil texture and water retention as spatial predictors of denitrification in urban wetlands[J]. Soil Biology & Biochemistry, 2016, 101: 237-250. [23] WALLER L J, EVANYLO G K, KROMETIS L H, et al. Engineered and environmental controls of microbial denitrification in established bioretention cells[J]. Environmental science & technology, 2018, 52(9): 5358-5366. [24] ATTARD E, RECOUS S, CHABBI A, et al. Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses[J]. Global Change Biology, 2011, 17: 1975-1989. doi: 10.1111/j.1365-2486.2010.02340.x [25] SEITZINGER S, HARRISON J K, BOHLKE J K, et al. Denitrification across landscapes and waterscapes: a synthesis[J]. Ecological Applications, 2006, 16(6): 2064-2090. doi: 10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2