[1] |
PAMURU S T, FORGIONE E, CROFT K, et al. Chemical characterization of urban stormwater: Traditional and emerging contaminants[J]. Science of The Total Environment, 2022, 813: 151887. doi: 10.1016/j.scitotenv.2021.151887
|
[2] |
ECKART K, MCPHEE Z, BOLISETTI T. Performance and implementation of low impact development – A review[J]. Science of The Total Environment, 2017, 607-608: 151887.
|
[3] |
DAVIS A P, HUNT W F, TRAVER R G, et al. Bioretention technology: Overview of current practice and future needs[J]. Journal of Environmental Engineering, 2009, 135(3): 109-117. doi: 10.1061/(ASCE)0733-9372(2009)135:3(109)
|
[4] |
JIANG C B, LI J K, HU Y H, et al. Construction of water-soil-plant system for rainfall vertical connection in the concept of sponge city: A review[J]. Journal of Hydrology, 2022, 605: 127327. doi: 10.1016/j.jhydrol.2021.127327
|
[5] |
JIANG C B, LI J K, LI H, et al. Low-impact development facilities for stormwater runoff treatment: Field monitoring and assessment in Xi'an area, China[J]. Journal of Hydrology, 2020, 585: 124803. doi: 10.1016/j.jhydrol.2020.124803
|
[6] |
LOPEZ-PONNADA E V, LYNN T J, ERGAS S J, et al. Long-term field performance of a conventional and modified bioretention system for removing dissolved nitrogen species in stormwater runoff[J]. Water Research, 2020, 170: 115336. doi: 10.1016/j.watres.2019.115336
|
[7] |
LINTERN A, MCPHILLIPS L, WINFREY B, et al. Best management practices for diffuse nutrient pollution: Wicked problems across urban and agricultural watersheds[J]. Environmental Science & Technology, 2020, 54(15): 9159-9174.
|
[8] |
COLLINS K A, LAWRENCET J, STANDER E K, et al. Opportunities and challenges for managing nitrogen in urban stormwater: A review and synthesis[J]. Ecological Engineering, 2010, 36(11): 1507-1519. doi: 10.1016/j.ecoleng.2010.03.015
|
[9] |
LI L Q, DAVIS A P. Urban stormwater runoff nitrogen composition and fate in bioretention systems[J]. Environmental science & technology, 2014, 48(6): 3403-3410.
|
[10] |
BISWAL B, VIJAYARAGHAYAN K, ADAM M, et al. Biological nitrogen removal from stormwater in bioretention cells: a critical review[J]. Critical reviews in biotechnology, 2021: 1-23.
|
[11] |
李立青, 胡楠, 刘雨情, 等. 3种生物滞留设计对城市地表径流溶解性氮的去除作用[J]. 环境科学, 2017, 38(5): 1881-1888. doi: 10.13227/j.hjkx.201612215
|
[12] |
LI L Q, YANG J M, DAVIS A P, et al. Dissolved inorganic nitrogen behavior and fate in bioretention systems: Role of vegetation and saturated zones[J]. Journal of Environmental Engineering, 2019, 145(11): 04019074. doi: 10.1061/(ASCE)EE.1943-7870.0001587
|
[13] |
KONG Z, MA H Y, SONG Y Q, et al. A long term study elucidates the relationship between media amendment and pollutant treatment in the stormwater bioretention system: Stability or efficiency[J]. Water Research, 2022, 225: 119124. doi: 10.1016/j.watres.2022.119124
|
[14] |
CHEN X L, PELTIER E, STURM B S M, et al. Nitrogen removal and nitrifying and denitrifying bacteria quantification in a stormwater bioretention system[J]. Water research, 2013, 47(4): 1691-1700. doi: 10.1016/j.watres.2012.12.033
|
[15] |
MOGHADAM S V, JAFARZADEH A, MATTA A, et al. Evaluation of nitrogen removal, functional gene abundance and microbial community structure in a stormwater detention basin[J]. Journal of environmental management, 2023, 325: 116669. doi: 10.1016/j.jenvman.2022.116669
|
[16] |
HUANG L Q, LUO J Y, LI L Q, et al. Unconventional microbial mechanisms for the key factors influencing inorganic nitrogen removal in stormwater bioretention columns[J]. Water research, 2021, 209: 117895.
|
[17] |
BETTEZ N D, GROFFMAN P M. Denitrification potential in stormwater control structures and natural riparian zones in an urban landscape[J]. Environmental Science & Technology, 2012, 46(20): 10909-10917.
|
[18] |
GEETS J, COOMAN M D, WITTEBOLLE L, et al. Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge[J]. Applied Microbiology & Biotechnology, 2007, 75(1): 211-221.
|
[19] |
LIGI T, TRUU M, TRUU J, et al. Effects of soil chemical characteristics and water regime on denitrification genes (nirS, nirK, and nosZ) abundances in a created riverine wetland complex[J]. Ecological Engineering, 2014, 72: 47-55. doi: 10.1016/j.ecoleng.2013.07.015
|
[20] |
刘妍霁, 刘子恺, 金圣圣, 等. 亚热带森林土壤氨氧化微生物和反硝化微生物功能基因丰度对氮磷输入的响应[J]. 应用生态学报, 2023, 34(3): 639-646. doi: 10.13287/j.1001-9332.202303.005
|
[21] |
SKOROBOGATOY A, HE J, CHU A, et al. The impact of media, plants and their interactions on bioretention performance: A review[J]. Science of The Total Environment, 2020, 715: 136918. doi: 10.1016/j.scitotenv.2020.136918
|
[22] |
PALTA M M, EHRENFELD J G, GIMENEZ D, et al. Soil texture and water retention as spatial predictors of denitrification in urban wetlands[J]. Soil Biology & Biochemistry, 2016, 101: 237-250.
|
[23] |
WALLER L J, EVANYLO G K, KROMETIS L H, et al. Engineered and environmental controls of microbial denitrification in established bioretention cells[J]. Environmental science & technology, 2018, 52(9): 5358-5366.
|
[24] |
ATTARD E, RECOUS S, CHABBI A, et al. Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses[J]. Global Change Biology, 2011, 17: 1975-1989. doi: 10.1111/j.1365-2486.2010.02340.x
|
[25] |
SEITZINGER S, HARRISON J K, BOHLKE J K, et al. Denitrification across landscapes and waterscapes: a synthesis[J]. Ecological Applications, 2006, 16(6): 2064-2090. doi: 10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2
|