-
近年来,通过微生物燃料电池 (microbial fuel cell, MFC) 将蕴藏在有机污染物中的化学能直接转化为电能,成为废水能源化利用的新兴方向[1]。葡萄糖、乙酸钠、醋酸钠等低分子有机物和纤维素、淀粉、蛋白质等高分子有机物均被证实可成为MFC的底物[2],且有机底物的组成越简单,有机物分子量越低,MFC的输出功率越大[3]。尿液中有机物质量浓度高 (8~17 g·L−1,以COD计) [1],含有肌酐、肌酸、尿酸等小分子有机物,易于微生物直接利用。同时,尿液具有良好的溶液电导率 (0~20 mS·cm−1) [4],能降低MFC系统的扩散内阻和传质内阻改善产电性能。尿液中高浓度的尿素 (20 g·L−1) 使其具有极强的碱性缓冲能力 (660 mmol·L−1) ,可以平衡氧化约5 g·L−1有机物产酸导致的pH下降[5]。这些特质使尿液相比于其他有机底物,具备了更优良的潜力。此外,尿液日产量庞大 (全球1.16~1.54×1010 L·d−1) [6],相比人工合成有机底物更具有经济性。
2012年,英国西英格兰大学IEROPOULOS教授团队使用碳幕作阴、阳电极,阳离子交换膜作分隔材料,总体积为50 mL的双室型MFC (图1) ,从尿液中获得8 mA·m−2的电流密度[7],以尿液作为驱动MFC“燃料”的研究开始被关注。同年,KUNTKE[8]等构建总体积250 mL的双室型MFC,以石墨毡作阳极,载铂碳毡作阴极,阳离子交换膜作分隔材料,处理尿液产生500 mA·m−2的电流密度,并基于NH4+在阳离子交换膜中迁移得到3.29 g·d−1·m−2的氨氮回收率,实现MFC对尿液中资源回收同时增强产电性能。经过近10年的发展,通过从电极材料、分隔材料、产电微生物、反应器构型等方面的优化研究,基于尿液为阳极基质的单个MFC从研究初期功率密度仅为0.1 mW·m−2[9],到现在可超过1 000 mW·m−2[10],并且通过堆栈式扩大在穿戴设备、微型电器及小功率照明设备的供能上均有实践和现场应用[11-17],而要实现在现实生活中的普及还需进一步提高其功率密度。
基于对近十年以尿液为阳极基质的MFC研究进行梳理,阐述尿液在MFC中的工作原理,从产电微生物、电极及膜材料、反应器组件方面对产电性能的影响因素进行分析,通过总结现阶段尚需改进的工作及对未来提升产电性能的有效方法,并对其产生能源和尿液中资源的合理利用途径给出建议,以期在为MFC的研究与工程化应用提供参考。
以尿液为阳极基质的微生物燃料电池研究进展
Research progress of microbial fuel cell based on urine as anode substrate
-
摘要: 微生物燃料电池 (MFC) 是一种利用微生物将有机物中的化学能直接转化成电能的环境友好型技术,已成为污水资源化领域的研究重点。尿液以高有机浓度、高电导率、营养物质丰富且产量庞大等特点成为MFC的优选基质。梳理了近十年以尿液为阳极基质的MFC研究工作,详细阐述了尿液作为MFC阳极基质的优势和工作机理,以及该研究领域的发展历程;总结了以尿液为阳极基质的MFC中产电微生物、电极及膜材料、反应器构型等因素对产电性能的影响;在现有研究的基础上就产电性能、能源与资源回收效益的提升以及工程化应用方面现存挑战与发展方向给出建议,以期为更好地解决基于尿液为阳极基质的MFC在实际应用中的难题提供参考。
-
关键词:
- 微生物燃料电池(MFC) /
- 尿液 /
- 产电微生物 /
- 电极材料 /
- 能源回收
Abstract: Microbial fuel cell is an environmentally friendly technology in the bio-electrochemical system. It can directly convert the chemical energy in organic wastewater into electrical energy by virtue of the metabolic capacity of electrogenic microorganisms and has gradually become the focus of research. Urine has become a good choice for microbial fuel cell substrate due to its high organic concentration, high conductivity, rich nutrients and large output. This paper reviewed the research work of microbial fuel cell base on urine as anode substrate in the past decade. First, the advantages and mechanism of urine as the substrate were demonstrated in detail, as well as the development history of this research field. Then the influence of factors such as electro-generating microorganisms, electrode and membrane materials, reactor configuration, etc. on the electricity generation performance of MFC base on urine was summarized. Finally, on the basis of the existing research, suggestions were given on the current challenges and development directions in three aspects: power generation efficiency, improvement of energy and resource recovery efficiency, and engineering application, in order to solve the problems in the practical application of MFC treatment of urine better. -
表 1 尿液MFC中常见的阳极微生物及特性
Table 1. Common anodic microorganisms and characteristics in urine MFC
纲 科 属 种 产电性能 文献 α-变形菌纲a 慢生根瘤菌科 红假单胞杆菌属 — — [28] 红杆菌科 玫瑰杆菌属 — — [28] 红杆菌属 红杆菌属 — [28] 斯塔普氏菌属 — — [20] 嘉利翁氏菌科 亚硝化单胞菌属 [29] β-变形菌纲a 丛毛单胞菌科 氢噬胞菌属 — — [20] 普罗卡杆菌科 普罗卡杆菌属 — — [29] 伯克氏菌科 贪铜菌属 Cupriavidus sp. — [27] 红育菌属 — — 伯克氏菌属 红藻菌 — [25] 红环菌科 红环菌属 — — [27] 陶厄氏菌属 — — [30] 甲基洛维氏菌 — — [27] 固氮弓菌属 — — [20] 产碱菌科 产碱菌属 — — [27] 德克斯氏菌属 — — [31] 寡源杆菌属 解脲寡源杆菌 — [32] 嗜氢菌科 硫杆状菌属 — — [20] γ-变形菌纲a 假单胞菌科 假单胞菌属 铜绿假单胞杆菌 455 mV [31] 门多萨假单胞菌 — [33] 硫假单胞菌 — [34] 肠杆菌科 埃希菌属 大肠杆菌 — [35] 变形杆菌属 普通变形杆菌 482 mV [36] 沙门氏菌属 鼠伤寒沙门氏菌 634 μW [37] 盐单胞菌科 盐单胞菌属 — — [20] 交替单胞菌科 别样希瓦氏菌属 — — [37] 气单胞菌科 甲苯单胞菌属 甲苯单胞菌 424 mW·m-2 硫发菌科 硫发菌属 — — 鱼立克次体科 噬甲基菌属 嗜甲基菌 — [32] ε-变形菌纲a 希万氏菌科 希瓦氏菌属 希瓦氏菌 — [28] 弯曲菌科 弓形杆菌属 — — [31] δ-变形菌纲a 地杆菌科 地杆菌属 硫还原地杆菌 0.17 mA·cm-2 [35] 脱硫弧菌科 脱硫弧菌属 — — [28] 除硫单胞菌科 除硫单胞菌属 — — [36] 芽孢杆菌纲b 乳酸杆菌科 乳杆菌属 — — [31] 气球菌科 气球菌属 尿道气球菌 — [27] 肉杆菌科 Atopostipes Atopostipes sp. — [35] 芽孢杆菌纲b 肉杆菌科 束毛球菌 — — [35] 德库菌属 — — [27] 头孢菌属 — — [38] 芽孢杆菌科 芽孢杆菌属 枯草芽孢杆菌 147 mV [39] 葡萄球菌科 葡萄球菌属 金黄色葡萄球菌 718 μW [28] 科未定 厌氧醋菌科 — — [39] 肠球菌科 肠球菌属 — — [30] 梭菌纲b 梭菌科 胺基酸杆菌属 [20] 梭菌属- — — [35] 消化链球菌科 微单胞菌属 — — [28] 噬胨菌属 — — [38] 消化链球菌属 — — [28] 蒂西耶氏菌属 噬酸葡萄球菌 — [40] 硫杆菌属 — — [30] 小纺锤状菌属 — — [36] 消化球菌属 — — [27] 优杆菌科 Anaerovorax — — [30] 梅利索球菌属 — — [31] 硝化螺旋菌纲c 硝化螺旋菌 硝酸螺旋菌属 — — [37] 柔膜菌纲d 丹毒丝菌科 丹毒丝菌属 — — [38] 拟杆菌纲e 拟杆菌科 — — — [27] 理研菌科 产氢产乙酸菌属 Petrimonas sp. [30] 黄杆菌纲l 黄杆菌科 黄杆菌属 — — [38] 绿弯菌纲f — — — — [27] 放线菌亚纲g 假诺卡氏菌科 — — — [37] 微球菌科 四联球菌属 — — [27] 酸杆菌纲h — — — — [36] 广古菌纲j — — — — [29] 异常球菌纲k 特吕珀菌科 特吕珀菌属 — — [27] 注:a代表变形菌门;b代表厚壁菌门;c代表硝化螺旋菌门;d代表柔膜菌门;e代表拟杆菌门;f代表绿弯菌门;g代表放线菌门;h代表酸杆菌门;i代表浮霉菌门;j代表广古菌门;k代表异常球菌门;l代表黄杆菌门。 表 2 尿液MFC构建组件及性能
Table 2. Construction components and performance of urine MFC
构型 阳极液/容积 阴极液/容积 阳极 阴极 膜材料 外阻/Ω 温度/℃ HRT 产电性能 文献 双室 真实尿液/25 mL 自来水/25 mL 碳布 碳布 CEM 1 300 室温 6.25 min 8 mA·m−2 [7] 单室 真实尿液/130 mL — 碳刷 碳布/Pt — 1 000 30 间歇式 0.06 mW [51] 单室 真实尿液/130 mL — 碳刷 碳布/Pt — 30 间歇式 0.23 mA [9] 双室 真实尿液/- — 碳幕 碳纤维 陶瓷膜 1 000 室温 20 h 7 700 mW·m−3 [52] 双室×48 真实尿液/0.7 mL -/0.7 mL 碳纤维 碳纤维 陶瓷膜 1 000 22 — 1 850 mW·m−3 [53] 双室×12 真实尿液/49 mL — 碳纤维 石墨 陶瓷膜 — 室温 3.8 h 2.1 mW [12] 双室×24 真实尿液/6.25 mL — 碳纤维 碳布 CEM 24 h 2.5 mW 单室×4 真实尿液/6.9 L — 碳纤维 活性炭 — — 室温 11.5 h 130 mW [13] 单室 真实尿液/0.4 mL — 碳布 活性炭 — — 室温 10 min 1.2 mW [54] 双室×288 真实尿液/25 L — 活性炭 活性炭 陶瓷膜 — 室温 间歇式 400 mW [55] 单室×432 真实尿液/42 L — 碳布 碳布 — — 室温 间歇式 700 mW [17] 双室 真实尿液/20 mL PBS/20 mL 石墨毡 碳毡、Pt CEM 1 000 20 20 min 500 mA·m−2 [8] 双室×9 真实尿液/30 mL PBS/30 mL 碳布 活性炭 陶瓷膜 100 室温 1.5 h 1.28 mW [27] 双室 真实尿液/90 mL PBS /90 mL 碳刷 碳刷 CEM 100 35 间歇式 421.9 mW·m−3 [56] 双室 真实尿液/30 mL — 碳布 活性炭 陶瓷膜 100 室温 42.8 min 1.2 mW [32] 单室 真实尿液/12 mL — 碳布 碳布 — 980 32 — 156 mW·m−2 [49] 单室 真实尿液/18 mL — 镍片 碳布、Pt、活性炭 — — 室温 2.25 h 8 140 W·m−3 [57] 真实尿液/0.08 mL — — — 16 min 44.16 W·m−3 单室 真实尿液/30 mL — 碳膜 碳膜 — 室温 间歇式 124.2 mW·m−2 [35] 单室 真实尿液/80 mL — 菱镁矿 碳毡 — — — 20 min 1.7 mA·cm−2 [50] 双室 模拟尿液/40 mL PBS/40 mL 碳布 碳布 PEM 1 000 35 间歇式 0.44 mW·m−2 [58] 石墨烯 碳布 44.9 W·m−2 PANI、不锈钢、钛 碳布 930 mW·m−3 三室 真实尿液/315 mL 尿液/105 mL 活性炭 炭黑、活性炭 CEM、AEM 500 25 52.5 min 21.3 W·m−3 [59] 双室 模拟尿液/40 mL PBS/40 mL 碳布 碳毡 PEM 1 000 35 间歇式 555.1 mW·m−3 [60] 单室×15 真实尿液/6.25 mL — 多孔碳、碳纤维 炭黑 — — 22 32.4 min 60.7 mW·m−2 [61] 双室×22 真实尿液/1.8 L — 活性炭、碳幕 碳幕 陶瓷膜 — 室温 间歇式 21.1 W·m−3 [62] 双室 真实尿液/12.5 mL — 碳膜 铁盐、链霉素、活性炭 陶瓷膜 1 000 室温 3.5 h 1 040 mW·m−2 [10] 双室×3 真实尿液/60 mL — 碳纤维 铁盐、尼卡巴嗪、活性炭 陶瓷膜 500 室温 间歇式 4 480 mW·m−3 [63] 单室 真实尿液/- — 纳米二氧化钛 活性炭、Pt — — 室温 20 min 900 mW·m−2 [64] 双室×32 真实尿液/3.5 L — 碳膜 碳幕 陶瓷膜 4 室温 — 65 mW·m−2 [65] 双室 合成尿液/28 mL NaCl/20 mL 碳刷 碳布、Pt CEM 1 000 30 — 9 210 mW·m−3 [66] 三室 合成尿液/28 mL 合成尿液/28 mL 石墨刷 活性炭 CEM、AEM 10 30 间歇式 1 300 mW·m−2 [67] 三室 真实尿液/200 mL 真实尿液/200 mL 石墨 碳布、炭黑、Pt CEM、AEM — 室温 9.62 h 3 A·m−2 [68] 双室×8 真实尿液/435 mL — 碳纱、活性炭 活性炭、碳幕 陶瓷膜 — 室温 12 h 15 mW [69] 单室×28 真实尿液/525 mL — 活性炭 — 12 h 25 mW 双室×18 真实尿液/360 mL — 碳幕 活性炭 陶瓷膜 1 000 室温 43.37 h 1.06 mW [70] 双室 真实尿液/10 mL — 碳板 活性炭、碳幕 陶瓷膜 — 室温 2.86 h 1.05 mW [71] 双室×12 真实尿液/200 mL — 碳膜 碳纤维、活性炭 陶瓷膜 80 22 22.22 h 2.2 mW [72] 双室×6 真实尿液/96 mL — 碳纱 碳膜、活性炭 陶瓷膜 — 室温 10.67 h 3.1 mW [73] 双室×6 真实尿液/168 mL — 碳纤维 活性炭、Pt 陶瓷膜 500 室温 1.83 h 500 mW·m−2 [74] 单室 真实尿液/ 碳纤维 活性炭 — 120 室温 — 3.0 mW [75] -
[1] SHARMA R, KUMARI R, PANT D, et al. Bioelectricity generation from human urine and simultaneous nutrient recovery: Role of Microbial Fuel Cells[J]. Chemosphere, 2021, 292: 133437. [2] 郭璇. 微生物燃料电池技术底物的研究进展[J]. 广东化工, 2014, 41(18): 112-113. doi: 10.3969/j.issn.1007-1865.2014.18.059 [3] 孔晓英, 孙永明, 李连华, 等. 不同底物对微生物燃料电池产电性能的影响[J]. 农业工程学报, 2011, 27(S1): 185-188. [4] WALTER X A, GAJDA I, FORBES S, et al. Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column[J]. Biotechnology for biofuels, 2016, 9(1): 93. doi: 10.1186/s13068-016-0504-3 [5] LEDEZMA P, KUNTKE P, BUISMAN C J N, et al. Source-separated urine opens golden opportunities for microbial electrochemical technologies[J]. Trends in Biotechnology, 2015, 33(4): 214-220. doi: 10.1016/j.tibtech.2015.01.007 [6] 高振超. 尿液的氮磷资源化与处理技术研究[D]. 北京: 北京交通大学. 2018. [7] IEROPOULOS I, GREENMAN J, MELHUISH C. Urine utilization by microbial fuel cells; energy fuel for the future[J]. Physical Chemistry Chemical Physics, 2011, 14(1): 94-98. [8] KUNTKE P, SMIECH K M, BRUNING H, et al. Ammonium recovery and energy production from urine by a microbial fuel cell[J]. Water Research, 2012, 46(8): 2627-2636. doi: 10.1016/j.watres.2012.02.025 [9] SANTORO C, IEROPOULOS I, GREENMAN J, et al. Current generation in membraneless single chamber microbial fuel cells (MFCs) treating urine[J]. Journal of Power Sources, 2013, 238: 190-196. doi: 10.1016/j.jpowsour.2013.03.095 [10] SALAR G M J, SANTORO C, KODALI M, et al. Iron-streptomycin derived catalyst for efficient oxygen reduction reaction in ceramic microbial fuel cells operating with urine[J]. Journal of power sources, 2019, 425: 50-59. doi: 10.1016/j.jpowsour.2019.03.052 [11] TAGHAVI M, STINCHCOMBE A, GREENMAN J, et al. Self-sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC[J]. Bioinspiration & Biomimetics, 2016, 11(1): 016001. [12] IEROPOULOS I A, LEDEZMA P, STINCHCOMBE A, et al. Waste to real energy: the first MFC powered mobile phone[J]. Physical Chemistry Chemical Physics, 2013, 15(37): 15312-15316. doi: 10.1039/c3cp52889h [13] WALTER X A, GREENMAN J, IEROPOULOS I A. Microbial fuel cells directly powering a microcomputer[J]. Journal of Power Sources, 2020, 446: 227328. doi: 10.1016/j.jpowsour.2019.227328 [14] LIU Y, HE L F, DENG Y Y. Recent progress on the recovery of valuable resources fromsource-separated urine on-site using electrochemical technologies: A review[J]. Chemical engineering journal, 2022, 442(1): 136200. [15] IEROPOULOS I, STINCHCOMBE A, GAJDA I, et al. Pee Power Urinal – Microbial Fuel Cell Technology Field Trials In The Context Of Sanitation[J]. Environmental Science:Water Research & Technology, 2016, 2(2): 336-343. [16] WALTER X A, YOU J, WINFIELD J, et al. From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights[J]. Applied Energy, 2020, 277: 115514. doi: 10.1016/j.apenergy.2020.115514 [17] WALTER X A, MERINO-JIMÉNEZ I, GREENMAN J, et al. PEE POWER® urinal II – Urinal scale-up with microbial fuel cell scale-down for improved lighting[J]. Journal of Power Sources, 2018, 392: 150-158. doi: 10.1016/j.jpowsour.2018.02.047 [18] NARAYANANA N, MANGOTTIRI V, NARAYANAN K. Waste to Energy Conversion and Sustainable Recovery of Nutrients from Pee Power - Recent Advancements in Urine-Fed MFCs[J]. Mini-Reviews in Organic Chemistry, 2019, 16(7): 768-779. [19] MASRURA S U, DISSANAYAKE P, YUQING S, et al. Sustainable use of biochar for resource recovery and pharmaceutical removal from human urine: A critical review[J]. Critical Reviews in Environmental Science and Technology, 2020, 51(24): 3016-3048. [20] YANG N, LIU H, JIN X, et al. One-pot degradation of urine wastewater by combining simultaneous halophilic nitrification and aerobic denitrification in air-exposed biocathode microbial fuel cells (AEB-MFCs)[J]. Science of The Total Environment, 2020, 748: 141379. doi: 10.1016/j.scitotenv.2020.141379 [21] 刘有华, 王思婷, 杨乔乔, 等. 国内外水体富营养化现状及聚磷菌研究进展[J]. 江苏农业科学, 2021, 49(9): 26-35. [22] 刘远峰, 张秀玲, 张其春, 等. 微生物燃料电池中阳极产电菌的研究进展[J]. 精细化工, 2020, 37(9): 1729-1737. doi: 10.13550/j.jxhg.20200001 [23] PRATHIBA S, KUMAR P S, VO D N. Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment[J]. Chemosphere, 2021, 286(Pt 3): 131856. [24] 黄霞, 梁鹏, 曹效鑫, 等. 无介体微生物燃料电池的研究进展[J]. 中国给水排水, 2007, 23(4): 1-6. doi: 10.3321/j.issn:1000-4602.2007.04.001 [25] 洪义国, 郭俊, 孙国萍. 产电微生物及微生物燃料电池最新研究进展[J]. 微生物学报, 2007, 47(1): 173-177. doi: 10.3321/j.issn:0001-6209.2007.01.036 [26] 杨政伟, 顾莹莹, 赵朝成, 等. 土壤微生物燃料电池的研究进展及展望[J]. 化工学报, 2017, 68(11): 3995-4004. doi: 10.11949/j.issn.0438-1157.20170793 [27] OBATA O, SALAR-GARCIA M J, GREENMAN J, et al. Development of efficient electroactive biofilm in urine-fed microbial fuel cell cascades for bioelectricity generation[J]. J Environ Manage, 2020, 258: 109992. doi: 10.1016/j.jenvman.2019.109992 [28] SALARGARCIA M J, OBATA O, KURT H, et al. Impact of inoculum type on the microbial community and power performance of urine-fed Microbial Fuel Cells[J]. Microorganisms, 2020, 8(12): 1921. doi: 10.3390/microorganisms8121921 [29] Barbosa S G, Peixoto L, Soares O, et al. Influence of carbon anode properties on performance and microbiome of Microbial Electrolysis Cells operated on urine[J]. Electrochimica Acta, 2018: 122-132. [30] THAPA B S, KIM T, PANDIT S, et al. Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry[J]. Bioresource Technology, 2022, 347: 126579. doi: 10.1016/j.biortech.2021.126579 [31] PRIYA S, SRIKANTH M. Nutrient recovery and microbial diversity in human urine fed microbial fuel cell[J]. Water Science & Technology, 2019, 79(4): 718-730. [32] OLUWATOSIN O, JOHN G, HALIL K, et al. Resilience and limitations of MFC anodic community when exposed to antibacterial agents[J]. Bioelectrochemistry, 2020, 134: 107500. doi: 10.1016/j.bioelechem.2020.107500 [33] 贾婧, 彭俊霖, 王一靖, 等. 反硝化微生物燃料电池脱除低C/N废水中氮的研究[J]. 环境污染与防治, 2021, 43(8): 937-941. doi: 10.15985/j.cnki.1001-3865.2021.08.002 [34] 陈诗雨, 许志成, 杨婧, 等. 微生物燃料电池在废水处理中的研究进展[J]. 化工进展, 2022, 41(2): 951-963. doi: 10.16085/j.issn.1000-6613.2021-0420 [35] PRIYA S, DEVENDRA K, SRIKANTH M. Probing the degradation of pharmaceuticals in urine using MFC and studying their removal efficiency by UPLC-MS/MS[J]. Journal of Pharmaceutical Analysis, 2021, 11(3): 320-329. doi: 10.1016/j.jpha.2020.04.006 [36] SÓNIA G B, LUCIANA P, OLÍVIA S G P S, et al. Influence of carbon anode properties on performance and microbiome of Microbial Electrolysis Cells operated on urine[J]. Electrochimica Acta, 2018, 267: 122-132. doi: 10.1016/j.electacta.2018.02.083 [37] IEROPOULOS I, OBATA O, PASTERNAK G, et al. Fate of three bioluminescent pathogenic bacteria fed through a cascade of urine microbial fuel cells[J]. Journal of industrial microbiology & biotechnology, 2019, 46(5): 587-599. [38] GREENMAN J, GAJDA I, IEROPOULOS I. Microbial Fuel Cells (MFC) and microalgae; Photo Microbial Fuel Cell (PMFC) as complete recycling machines[J]. Sustainable Energy & Fuels, 2019, 3(10): 2546-2560. [39] 王美聪, 王紫诺, 张学军. 羧甲基纤维素钠为阳极底物的微生物燃料电池产电性能[J]. 化工管理, 2020(4): 108-109. doi: 10.3969/j.issn.1008-4800.2020.04.068 [40] 张吉强. 微生物燃料电池同步脱氮产电性能及机理研究[D]. 杭州: 浙江大学, 2014. [41] 汪飞. MnO2/聚苯胺复合修饰微生物燃料电池阳极处理垃圾渗滤液[D]. 淮南: 安徽理工大学, 2021. [42] 袁晓东. 基于A/O工艺的双室MFC脱氮除磷及产电性能的研究[D]. 张家口: 河北建筑工程学院, 2020. [43] 梁涛. 光合微生物燃料电池(PMFC)同步处理两种不同废水的研究[D]. 太原: 太原理工大学, 2019. [44] 沈文瑞. 阳极菌群的调控对微生物燃料电池产能的促进[D]. 济南: 齐鲁工业大学, 2020. [45] 李莉, 代勤, 张赛, 等. 不同pH下微生物燃料电池降解含硫偶氮染料废水的效能及其机理[J]. 环境工程学报, 2021, 15(1): 115-125. doi: 10.12030/j.cjee.202004125 [46] SANTORO C, GARCIA M, WALTER X A, et al. Urine in bioelectrochemical systems: An overall review[J]. ChemElectroChem, 2020, 7(6): 1312-1331. doi: 10.1002/celc.201901995 [47] 臧华生, 周新国, 李会贞, 等. pH值和碳氮比对微生物燃料电池脱氮除磷效果的影响[J]. 灌溉排水学报, 2019, 38(2): 49-55. [48] 王佳琪, 付国楷, 黄梓良, 等. 碳氮比对高盐废水单室MFCs产电、污染物去除及微生物群落结构的影响[J]. 环境工程学报, 2021, 15(4): 1354-1366. doi: 10.12030/j.cjee.202009094 [49] CATAL T, KUL A, ATALAY V E, et al. Efficacy of microbial fuel cells for sensing of cocaine metabolites in urine-based wastewater[J]. Journal of Power Sources, 2019, 414: 1-7. doi: 10.1016/j.jpowsour.2018.12.078 [50] HAO J W, ZENG H B, LI X Y, et al. Nitrogen and phosphorous recycling from human urine by household electrochemical fixed bed in sparsely populated regions[J]. Water Research, 2022, 218: 118467. doi: 10.1016/j.watres.2022.118467 [51] SANTORO C, IEROPOULOS I, GREENMAN J, et al. Power generation and contaminant removal in single chamber microbial fuel cells (SCMFCs) treating human urine[J]. International Journal of Hydrogen Energy, 2013, 38(26): 11543-11551. doi: 10.1016/j.ijhydene.2013.02.070 [52] TAGHAVI M, GREENMAN J, BE CC AI L, et al. High-performance, totally flexible, tubular Microbial Fuel Cell[J]. ChemElectroChem, 2015, 1(11): 1994-1999. [53] IEROPOULOS I A, GREENMAN J, MELHUISH C. Miniature microbial fuel cells and stacks for urine utilisation[J]. International Journal of Hydrogen Energy, 2013, 38(1): 492-496. doi: 10.1016/j.ijhydene.2012.09.062 [54] CARLO S, XAVIER A W, FRANCESCA S, et al. Self-stratified and self-powered micro-supercapacitor integrated into a microbial fuel cell operating in human urine[J]. Electrochimica Acta, 2019, 307: 241-252. doi: 10.1016/j.electacta.2019.03.194 [55] GAJDA I, GREENMAN J, MELHUISH C, et al. Electro-osmotic-based catholyte production by Microbial Fuel Cells for carbon capture[J]. Water Research, 2015, 86: 108-115. [56] 于瑞娟. BES处理尿液的影响因素及能源回收资源化研究[D]. 西安: 陕西科技大学, 2019. [57] YOUSEFI R, MARDANPOUR M M, YAGHMAEI S. Fabrication of the macro and micro-scale microbial fuel cells to monitor oxalate biodegradation in human urine[J]. Scientific reports, 2021, 11(1): 14346. doi: 10.1038/s41598-021-93844-y [58] 周宇. 尿液微生物燃料电池阳极性能的研究[D]. 北京: 北京工业大学, 2017. [59] GAO Y F, SUN D Y, WANG H, et al. Urine-powered synergy of nutrient recovery and urine purification in a microbial electrochemical system[J]. Environmental Science:Water Research & Technology, 2018, 4(10): 1427-1438. [60] 陈稳稳, 刘中良, 侯俊先, 等. 新型超级电容器材料修饰尿液微生物燃料电池阳极的研究[J]. 工程热物理学报, 2018, 39(8): 1818-1823. [61] YOU J, SANTORO C, GREENMAN J, et al. Micro-porous layer (MPL)-based anode for microbial fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21811-21818. doi: 10.1016/j.ijhydene.2014.07.136 [62] IWONA G, JOHN G, IOANNIS I. Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder[J]. Applied Energy, 2020, 262: 114475. doi: 10.1016/j.apenergy.2019.114475 [63] GAJDA I, GREENMAN J, SANTORO C, et al. Multi-functional microbial fuel cells for power, treatment and electro-osmotic purification of urine[J]. Journal of chemical technology and biotechnology, 2019, 94(7): 2098-2106. doi: 10.1002/jctb.5792 [64] DECTOR D, ORTEGA-DIAZ D, OLIVARES-RAMIREZ J M, et al. Harvesting energy from real human urine in a photo-microfluidic fuel cell using TiO2–Ni anode electrode[J]. International Journal of Hydrogen Energy, 2021, 46(51): 26163-26173. doi: 10.1016/j.ijhydene.2021.02.148 [65] CLEMENT A C, ANDREW S, IOANNIS I, et al. Urine microbial fuel cells in a semi-controlled environment for onsite urine pre-treatment and electricity production[J]. Journal of Power Sources, 2018, 400: 441-448. doi: 10.1016/j.jpowsour.2018.08.051 [66] HAN C, YUAN X, MA S, et al. Simultaneous recovery of nutrients and power generation from source-separated urine based on bioelectrical coupling with the hydrophobic gas permeable tube system[J]. Science of the Total Environment, 2022, 824: 153788. doi: 10.1016/j.scitotenv.2022.153788 [67] SIDAN L, HONGNA L, GUANGCAI T, et al. Resource recovery microbial fuel cells for urine-containing wastewater treatment without external energy consumption[J]. Chemical Engineering Journal, 2019, 373: 1072-1080. doi: 10.1016/j.cej.2019.05.130 [68] STEFANO F, MADDALENA E L, JULIETTE M, et al. Self-Powered Bioelectrochemical Nutrient Recovery for Fertilizer Generation from Human Urine[J]. Sustainability, 2019, 11(19): 5490. doi: 10.3390/su11195490 [69] WALTER X A, MADRID E, GAJDA I, et al. Microbial fuel cell scale-up options: Performance evaluation of membrane (c-MFC) and membrane-less (s-MFC) systems under different feeding regimes[J]. Journal of Power Sources, 2022, 520: 230875. doi: 10.1016/j.jpowsour.2021.230875 [70] RAMIREZ-NAVA J, MARTINEZ-CASTREJON M, GARCIA-MESINO R L, et al. The implications of membranes used as separators in microbial fuel cells[J]. Membranes(Basel), 2021, 11(10): 738. doi: 10.3390/membranes11100738 [71] SALAR-GARCÍA M J, WALTER X A, GURAUSKIS J, et al. Effect of iron oxide content and microstructural porosity on the performance of ceramic membranes as microbial fuel cell separators[J]. Electrochimica Acta, 2021, 367: 137385. doi: 10.1016/j.electacta.2020.137385 [72] MERINOJIMENEZ I, OBATA O, PASTERNAK G, et al. Effect of microbial fuel cell operation time on the disinfection efficacy of electrochemically synthesised catholyte from urine[J]. Process biochemistry (Barking, London, England), 2021, 101: 294-303. [73] JIMENEZ I M, BRINSON P, GREENMAN J, et al. Electronic faucet powered by low cost ceramic microbial fuel cells treating urine[J]. Journal of Power Sources, 2021, 506(1): 230004. [74] DE RAMON-FERNANDEZ A, SALAR-GARCIA M J, RUIZ F D, et al. Evaluation of artificial neural network algorithms for predicting the effect of the urine flow rate on the power performance of microbial fuel cells[J]. Energy (Oxf), 2020, 213: 118806. doi: 10.1016/j.energy.2020.118806 [75] WALTER X A, SANTORO C, GREENMAN J, et al. Self-stratifying microbial fuel cell: The importance of the cathode electrode immersion height[J]. International Journal of Hydrogen Energy, 2019, 44(9): 4524-4532. doi: 10.1016/j.ijhydene.2018.07.033 [76] GAJDA I, OBATA O, GREENMAN J, et al. Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species[J]. Scientific Reports, 2020, 10(1): 5533. doi: 10.1038/s41598-020-60626-x [77] 周宇, 刘中良, 侯俊先, 等. 石墨烯类材料修饰尿液微生物燃料电池阳极的研究[J]. 化工学报, 2018, 69(6): 2790-2796. [78] ZHOU Y, HOU J X, CHEN W W, et al. Carbon nanotube sponge 3D anodes for urine-powered microbial fuel cell[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2017, 39(14): 1543-1547. doi: 10.1080/15567036.2017.1339220 [79] ZHOU Y, TANG L J, LIU Z L, et al. A novel anode fabricated by three-dimensional printing for use in urine-powered microbial fuel cell[J]. Biochemical Engineering Journal, 2017, 124: 36-43. doi: 10.1016/j.bej.2017.04.012 [80] SALAR-GARCIA M J, MONTILLA F, QUIJADA C, et al. Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes[J]. Applied Energy, 2020, 278: 115528. doi: 10.1016/j.apenergy.2020.115528 [81] THULASINATHAN B,JAYABALAN T,ARUMUGAM N, et al. Wastewater substrates in microbial fuel cell systems for carbon-neutral bioelectricity generation: An overview[J]. Fuel, 2022, 317: 123369. doi: 10.1016/j.fuel.2022.123369 [82] 罗帝洲, 许玫英, 杨永刚. 微生物燃料电池串并联研究及应用[J]. 环境化学, 2020, 39(8): 2227-2236. doi: 10.7524/j.issn.0254-6108.2019052802 [83] WALTER X A, SANTORO C, GREENMAN J, et al. Scaling up self-stratifying supercapacitive microbial fuel cell[J]. Int J Hydrogen Energy, 2020, 45(46): 25240-25248. doi: 10.1016/j.ijhydene.2020.06.070 [84] MERINO-JIMENEZ I, GONZALEZ-JUAREZ F, GREENMAN J, et al. Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation[J]. Journal of Power Sources, 2019, 429: 30-37. doi: 10.1016/j.jpowsour.2019.04.043 [85] VENKATA M S, RAGHUVULU S V, SRIKANTH S, et al. Bioelectricity production by meditorless microbial fuel cell (MFC) under acidophilic condition using wastewater as substrate: influence of substrate loading rate[J]. Current Science, 2007, 92(12): 1720-1726. [86] HIL M F, ABU BAKAR M H. Tubular ceramic performance as separator for microbial fuel cell: A review[J]. International Journal of Hydrogen Energy, 2020, 45(42): 22340-22348. doi: 10.1016/j.ijhydene.2019.08.115 [87] WALTER X A, SANTORO C, GREENMAN J, et al. Scalability and stacking of self-stratifying microbial fuel cells treating urine[J]. Bioelectrochemistry, 2020, 133: 107491. doi: 10.1016/j.bioelechem.2020.107491 [88] YAMANE T,YOSHIDA N,SUGIOKA M, et al. Estimation of total energy requirement for sewage treatment by a microbial fuel cell with a one-meter air-cathode assuming Michaelis-Menten COD degradation[J]. RSC Advances, 2021, 11(33): 20036-20045. doi: 10.1039/d1ra03061b.eCollection2021Jun3