-
部分亚硝化-厌氧氨氧化 (partial nitrotation anammox process, PN/A) 工艺是一种新型、高效、节能的自养脱氮工艺,相对于传统硝化/反硝化脱氮工艺,具有无需碳源投加,可减少约60%曝气量、80%污泥产量、83% N2O排放量等优势[1],为处理含氮废水提供了新途径。目前,PN/A工艺已成功应用于污泥消化液、食品工业、养殖畜牧业、垃圾渗滤液等废水的处理,且脱氮性能良好[2-3]。这得益于在高温 (≥30 ℃) 、高NH4+-N (≥500 mg·L−1) 的废水中,其游离氨 (free ammonia, FA) >0.1 mg·L−1,游离亚硝酸盐 (free nitrous acid , FNA) >0.06 mg·L−1,达到了抑制NOB (nitrite oxidizing bacteria)生长的条件[4]。在可持续发展理念指引下,PN/A工艺具有广阔应用前景。然而,虽然PN/A工艺研究已较为深入,且已实现了高NH4+-N废水处理的工程应用,但PN/A工艺在城市污水主流处理中的应用仍未被充分确认。
PN/A工艺是氨氧化菌 (ammonia oxidizing bacteria, AOB) 在有氧条件下先将废水中约50%的NH4+-N转化为NO2−-N,剩余50%的NH4+-N和生成的NO2−-N在无氧条件下由厌氧氨氧化菌(anaerobic ammonia oxidizing bacteria, AnAOB)转化为N2[5]。在主流低温、低NH4+-N的条件下,NOB具有竞争优势;在有氧条件下,生成的NO2−-N极易被NOB进一步氧化为NO3−-N,从而引起出水NO3−-N升高,抑制AnAOB生长,严重破坏系统的脱氮性能和稳定性。因此,实现主流PN/A工艺稳定运行的关键是NOB活性抑制。为此,研究者们试图通过控制溶解氧 (dissolved oxygen, DO) 、污泥龄(sludge age, SRT)、好氧/缺氧交替、侧流驯化、添加抑制剂等策略抑制NOB活性。2007—2021年,关于PN/A工艺的年均发文量为16篇。2021年的发文量为60篇,达到研究顶峰,而2016年为年均增长率顶峰,为66.67%。其中,关于主流PN/A工艺的论文量在2017—2019年呈陡升趋势,而在2019年之后呈下降趋势。同时,调研当下主流PN/A工艺的工程应用情况,仅有荷兰鹿特丹污水处理厂、新加坡樟宜污水处理厂、奥地利Strass污水处理厂和西安第四污水处理厂实现了大规模的应用。综合分析判定,目前主流PN/A工艺普遍表现出脱氮性能低、稳定性差的问题,相关研究遇到了瓶颈。如何提高主流PN/A工艺的脱氮性能并实现长期稳定运行成为研究热点。
本文总结PN/A工艺中主要功能微生物的生长动力学特性,探讨目前主流PN/A中DO限制、好氧-缺氧交替、生物强化、投加抑制剂、SRT筛选、低NO2−-N质量浓度等NOB抑制策略的可靠性,并从性能和工艺复杂程度,探讨普遍采用的实现多重策略联合调控的反应系统,提出应用活性污泥数学模型 (activated sludge model, ASM) 助力主流PN/A工艺稳定运行调控的方案,帮助研究者从众多影响因子中辨认出关键调控参数、有效识别调控范围,以期探索将该模型应用于小试研究中的方法,并助力主流PN/A工艺中NOB活性抑制的研究和实践。
城市污水中部分亚硝化-厌氧氨氧化工艺NOB抑制策略的研究进展
Research progress of NOB inhibition strategy of partial nitrosation-anammox process in municipal wastewater
-
摘要: 城市污水具有低温低氨氮(NH4+-N)的特点,不利于亚硝酸盐氧化菌(NOB) 的长期稳定抑制,而NOB的过度增殖会导致出水硝氮 (NO3−-N) 指标升高,对其他功能微生物产生竞争性抑制作用,进而降低部分亚硝化-厌氧氨氧化 (PN/A) 系统的脱氮性能和稳定性。以氨氧化菌 (AOB) 、NOB、厌氧氨氧化菌 (AnAOB) 等功能微生物动力学参数、生长特性为基础,探讨了主流条件下的城市污水处理系统中优势功能微生物的变迁。综述了当前普遍采用的低溶氧 (DO) 限制、好氧-缺氧交替、生物强化、投加抑制剂、泥龄 (SRT) 筛选、低亚氮等NOB抑制策略,并总结了单一抑制策略无法长期、稳定抑制NOB活性,需进一步考察多重策略的联合作用。继而,从性能和工艺复杂程度,对目前普遍采用的实现多重策略联合调控的反应系统进行了探讨。提出采用活性污泥模型 (ASM) 与实验相结合的方法,为助力主流PN/A工艺运行调控提供了新思路,并指出深化基础理论的研究,开发新型的组合工艺强化NOB的抑制及脱氮性能稳定也是可行的发展方向。Abstract: Municipal sewage is characterized by low temperature and low ammonia nitrogen (NH4+-N), and nitrite oxidizing bacteria (NOB) can hardly be stably inhibited for a long time, while excessive proliferation of NOB will lead to the increase of NO3--N in effluent, which will produce competitive inhibition on other functional microorganisms, thus, the nitrogen removal performance and stability of partial nitrosation-anammox (PN/A) system is reduce. Based on the dynamic parameters and growth characteristics of functional microorganisms such as ammonia oxidizing bacteria (AOB), NOB and anaerobic ammonium oxidation bacteria (AnAOB), the changes of dominant functional microorganisms under mainstream conditions were discussed. The commonly used NOB inhibition strategies, such as low soluble oxygen (DO restriction), aerobic and hypoxia alternations, bioenhancement, inhibitor injection, mud age (SRT) panning, and low nitazine, were reviewed. It was concluded that a single inhibition strategy could not inhibit NOB activity in a long-term and stablly, and the combined effects of multiple strategies should be further investigated. Then, from the aspect of performance and the complexity of the process, the reaction system widely used to realize the joint control of multiple strategies was discussed. The method of combining activated sludge model (ASM) with experiment was proposed, which could provide a new idea for facilitating the operation and regulation of mainstream PN/A process. It was also pointed out that deeping the research of basic theories and developing a new combined process to strengthen the inhibition of NOB and the stability of nitrogen removal performance would also be a feasible development direction.
-
表 1 AOB、NOB、AnAOB生长动力学参数对比
Table 1. Comparison of growth kinetics parameters of AOB, NOB and AnAOB
菌种 世代周期/h 最佳pH Ks/(mg·L−1) Ko/(mg·L−1) 温度/℃ FA质量浓度/(mg·L−1) AOB 8~36 7.5~8.5 0.50~1.62 0.03~0.30 <15或>30 10~150 (不敏感) NOB 12~59 6.5~7.5 0.11~13 0.06~1.98 15~30 0.1~1.0 (较敏感) AnAOB 10~12d 7.8~8.3 0.10~0.39 NA 25~45 NA -
[1] KARTAL B, KUENEN J G, VAN L M. Engineering sewage treatment with anammox[J]. Science, 2010, 328(5979): 702-703. doi: 10.1126/science.1185941 [2] LACKNER S, GILBERT E M, VLAEMINCK S E, et al. Full-scale partial nitritation/anammox experiences--an application survey[J]. Water Research, 2014, 55: 292-303. doi: 10.1016/j.watres.2014.02.032 [3] ZHANG M, WANG X, ZHANG D, et al. Food waste hydrolysate as a carbon source to improve nitrogen removal performance of high ammonium and high salt wastewater in a sequencing batch reactor[J]. Bioresource Technology, 2022, 349: 126855. doi: 10.1016/j.biortech.2022.126855 [4] 吕心涛. 游离氨(FA)和游离亚硝酸(FNA)对亚硝酸盐氧化菌(NOB)活性的影响试验研究[D]. 兰州: 兰州交通大学, 2017. [5] CAO Y, VAN L. Mainstream partial nitritation-anammox in municipal wastewater treatment: status, bottlenecks, and further studies[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1365-1383. doi: 10.1007/s00253-016-8058-7 [6] 姚仁达, 苑泉, 王凯军. 底物流加-间歇运行方式下氨氧化细菌富集培养的效果及影响因素分析[J]. 环境工程学报, 2020, 14(4): 925-934. doi: 10.12030/j.cjee.201907043 [7] MANDELKER D R, HEETER D. Novel nitrospira-like bacteria as dominant nitrite-oxidizers in biofilms from wastewater treatment plants: diversity and in situ physiology[J]. Journal of the Physical Society of Japan, 2000, 41(4): 85-90. [8] CAPODICI M, CORSINO S F, TRAPANI D D, et al. Achievement of partial nitrification under different carbon-to-nitrogen ratio and ammonia loading rate for the co-treatment of landfill leachate with municipal wastewater[J]. Biochemical Engineering Journal, 2019, 149: 107229. doi: 10.1016/j.bej.2019.05.006 [9] BRENNAN R B, CLIFFORD E, DEVROEDT C, et al. Treatment of landfill leachate in municipal wastewater treatment plants and impacts on effluent ammonium concentrations[J]. Environment Management, 2017, 188: 64-72. [10] SIRIPONG S, RITTMANN B E. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants[J]. Water Research, 2007, 41(5): 1110-20. doi: 10.1016/j.watres.2006.11.050 [11] BLACKBURNE R, YUAN Z, KELLER J. Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic[J]. Water Research, 2007, 42: 2166-2176. [12] DONG W, LU G, YAN L, et al. Characteristics of pellets with immobilized activated sludge and its performance in increasing nitrification in sequencing batch reactors at low temperatures[J]. Chinese Journal of Environment Science (China), 2016, 42: 202-209. doi: 10.1016/j.jes.2015.09.002 [13] PARK H D, NOGUERA D R. Characterization of two ammonia oxidizing bacteria isolated from reactors operated with low dissolved oxygen concentrations[J]. Applied and Environmental Microbiology, 2007, 102(5): 1401-1417. doi: 10.1111/j.1365-2672.2006.03176.x [14] SCHRAMM A, BEER D, VAN D H. Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors[J]. Applied and Environmental Microbiology, 1999, 65(8): 3690-3696. doi: 10.1128/AEM.65.8.3690-3696.1999 [15] SIRIPONG S, RITTMANN B. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants[J]. Water Research, 2006, 41(5): 1110-1120. [16] SU Y, PENG Y, WANG J, et al. Rapid enrichment of anammox bacteria and transformation to partial denitrification/anammox with nitrification/denitrification sludge[J]. The Science of the Total Environment, 2022, 856(1): 158973. [17] ZHENG M, WANG Z, MENG J, et al. Inactivation kinetics of nitrite-oxidizing bacteria by free nitrous acid[J]. The Science of the Total Environment, 2020, 752: 141876. [18] NOWKA B, DAIMS H, SPIECK E. Comparison of oxidation kinetics of nitrite-oxidizing bacteria[J]. Applied and Environmental Microbiology, 2015, 81: 745-753. doi: 10.1128/AEM.02734-14 [19] GUISASOLA A, JUBANY I, BAEZA J A, et al. Respirometric estimation of the oxygen affinity constants for biological ammonium and nitrite oxidation[J]. Journal of Chemical Technology & Biotechnology Biotechnology, 2010, 80(4): 388-396. [20] TROUS M M, KUENEN J G, JETTEN M. Key physiology of anaerobic ammoniumoxidation.[J]. Applied and Environmental Microbiology, 1999, 65(7): 3248-3250. doi: 10.1128/AEM.65.7.3248-3250.1999 [21] VADIVELU V M, YUAN Z G, FUX C, et al. The inhibitory effects of free nitrous acid on the energy generation and growth processes of an enriched Nitrobacter culture[J]. Environment Science of Technology, 40(14): 4442– 4448. [22] WETT B, OMARI A, PODMIRSEG S M, et al. Going for mainstream deammonification from bench to full-scale for maximized resource efficiency[J]. Water Science of Technology, 58(6): 1155–1171 [23] CAO S, KOCH K, DU R, et al. Toward Mainstream Anammox by Integrating Sidestream Treatment[J]. Environment Science of Technology, 2022, 56(15): 10553-10556. doi: 10.1021/acs.est.2c03256 [24] 刘文龙. 城市污水主流厌氧氨氧化连续流工艺的脱氮除磷效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [25] OSHIKI M, SHIMOKAWA M, FUJII N, et al. Physiological characteristics of the anaerobic ammonium-oxidizing bacterium candidatus brocadia sinica[J]. Microbiology Reading, 2011, 157(Pt 6): 1706-1713. [26] STAR W, MICLEA A I, DONGEN U, et al. The membrane bioreactor: a novel tool to grow anammox bacteria as free cells[J]. Biotechnology and Bioengineering, 2008, 101(2): 286-294. doi: 10.1002/bit.21891 [27] ALICE M, OSHIKI M, AWATA T, et al. Physiological characterization of anaerobic ammonium oxidizing bacterium “ Candidatus Jettenia caeni”[J]. Environmental Microbiology, 2014, 17(6): 2172-2189. [28] WANG Z Y, ZHENG M, HU Z T, et al. Unravelling adaptation of nitrite-oxidizing bacteria in mainstream PN/A process: Mechanisms and counter-strategies[J]. Water Research, 2021, 200: 117239. doi: 10.1016/j.watres.2021.117239 [29] CUI B, YANG Q, LIU X, et al. The effect of dissolved oxygen concentration on long-term stability of partial nitrification process[J]. Chinese Journal of Environment Science, 2020, 90: 343-351. doi: 10.1016/j.jes.2019.12.012 [30] 包鹏,王淑莹,马斌,等. 不同溶解氧间歇曝气对亚硝酸盐氧化菌的影响[J]. 中国环境科学, 2016, 36(9): 2696-2702. [31] QIU J G, LI X Y, PENG Y Z, et al. Advanced nitrogen removal from landfill leachate via a two-stage combined process of partial nitrification-Anammox (PNA) and partial denitrification-Anammox (PDA)[J]. Science of the Total Environment, 2021, 80: 151186. [32] MIAO Y, ZHANG L, YANG Y, et al. Start-up of single-stage partial nitrification-anammox process treating low-strength swage and its restoration from nitrate accumulation[J]. Bioresource Technology, 2016, 218: 771-9. doi: 10.1016/j.biortech.2016.06.125 [33] YUAN Y, XIE Y Y, XU P L. Verification of inhibition effects of anoxic/aerobic alternation on NOB in nitrosation system under mainstream conditions[J]. Journal of Water Process Engineering, 2022, 45: 1012. [34] 李剑宇, 王少坡, 邱春生, 等. PN/A技术应用于城市污水主流处理的挑战与实践[J]. 水处理技术, 2020, 46(11): 24-30. doi: 10.16796/j.cnki.1000-3770.2020.11.005 [35] CAO L J, YAN W, YU L, et al. Challenges of THP-AD centrate treatment using partial nitritation-anammox (PN/A) - inhibition, biomass washout, low alkalinity, recalcitrant and more[J]. Water Research, 2021, 117(5): 555. [36] LI J, LI J, GAO R, et al. A critical review of one-stage anammox processes for treating industrial wastewater: Optimization strategies based on key functional microorganisms[J]. Bioresource Technology, 2018, 265: 498-505. doi: 10.1016/j.biortech.2018.07.013 [37] WANG Z, ZHANG L, ZHANG F, et al. Nitrite accumulation in comammox-dominated nitrification-denitrification reactors: effects of DO concentration and hydroxylamine addition[J]. Hazardous Materials, 2020, 384: 121375. doi: 10.1016/j.jhazmat.2019.121375 [38] CAO Y S, KWOK B H, YAN Z, et al. 新加坡最大回用水处理厂污水短程硝化厌氧氨氧化脱氮工艺[J]. 北京工业大学学报, 2015, 41(10): 1441-1454. doi: 10.11936/bjutxb2014120074 [39] HUBAUX N, WELLS G, MORGENROTH E. Impact of coexistence of flocs and biofilm on performance of combined nitritation-anammox granular sludge reactors[J]. Water Research, 2015, 68: 127-39. doi: 10.1016/j.watres.2014.09.036 [40] 高佳琦. 主流条件下多重调控抑制NOB的模拟与实验研究[D]. 苏州: 苏州科技大学, 2021. [41] SEUNTJENS D, ARROYO J, TENDELOO M V. Mainstream partial nitritation anammox with integrated fixed-film activated sludge: Combined aeration and floc retention time control strategies limit nitrate production[J]. Bioresource Technology, 2020, 314: 123711. doi: 10.1016/j.biortech.2020.123711 [42] 杨宗玥, 付昆明, 廖敏辉, 等. 短程硝化过程2种亚硝酸盐氧化菌抑制策略探讨[J]. 环境工程学报, 2019, 13(1): 222-231. doi: 10.12030/j.cjee.201806158 [43] 孙洪伟, 于雪, 李维维, 等. 游离亚硝酸抑制硝化杆菌属(Nitrobacter)活性动力学研究[J]. 中国环境科学, 2018, 38(11): 4246-4254. doi: 10.3969/j.issn.1000-6923.2018.11.033 [44] GU J, ZHANG M, WANG S, et al. Integrated upflow anaerobic fixed-bed and single-stage step-feed process for mainstream deammonification: A step further towards sustainable municipal wastewater reclamation[J]. The Science of the Total Environment, 2019, 678: 559-564. doi: 10.1016/j.scitotenv.2019.05.027 [45] 林兴. 回流PN-ANAMMOX脱氮工艺处理城市生活污水研究[D]. 苏州: 苏州科技大学, 2018. [46] 张亮, 李朝阳, 彭永臻. 城市污水PN/A工艺中NOB的控制策略研究进展[J]. 北京工业大学学报, 2022, 48(4): 421-429. doi: 10.11936/bjutxb2020110022 [47] 王文英, 黄勇, 顾晓丹, 等. 活性污泥数学模型在污水处理中的研究进展[J]. 工业水处理, 2014, 34(7): 1-4. doi: 10.11894/1005-829x.2014.34(7).001 [48] 顾晓丹, 黄勇. 活性污泥数学模型在污水处理中的应用研究[J]. 广东化工, 2012, 39(9): 129-132. doi: 10.3969/j.issn.1007-1865.2012.09.069 [49] 毛鹤群. 短程硝化反硝化动力学模型的建立及其应用[D]. 西安: 长安大学, 2012. [50] 蔡庆. 完全自养脱氮SBR反应器的运行、强化及模拟优化[D]. 重庆: 重庆大学, 2013. [51] 徐婷, 王丽, 吴军. 不同pH条件下短程硝化序批实验和数学模拟[J]. 环境工程学报, 2016, 10(6): 2840-2846. doi: 10.12030/j.cjee.201512198 [52] 张亮, 于静仪, 李朝阳, 等. 污水生物处理系统中全程氨氧化菌的研究进展[J]. 北京工业大学学报, 2020, 46(4): 402-411. doi: 10.11936/bjutxb2019090014