-
化工、医药等行业产生的难降解有机物会排入污水厂。然而,当前以生物处理为核心的传统污水厂无法有效降解这些难降解有机物,如何采用新工艺或者改良当前的污水工艺以应对新型污染物的挑战,已经成为了环境工作者的研究热点之一[1]。高级氧化法可产生具有强氧化能力的羟基自由基(·OH)、硫酸根自由基(SO4·−)等活性氧物种,使难降解有机物氧化成低毒或无毒的小分子物质[2-3],亦可改善其可生化性,故被认为是处理这类污染物的有效方法之一。
各类高级氧化法中,芬顿反应(式(1))因其条件温和、操作简便和价格低廉等优势而被广泛研究[4]。然而,在中性/碱性条件下,Fe2+会以氢氧化物的形式沉淀,失去活性,故该反应体系需要控制pH在3.0~4.0,以保证有高浓度的溶解态亚铁离子(Fe2+)持续驱动自由基的生成[5-6]。调节pH大幅提高了芬顿工艺的运行费用,阻碍了其在含有缓冲溶液的工业废水中的推广使用[7-8]。络合剂能使高浓度Fe2+在中性/碱性条件下以金属络合物(Fe2+-EDTA)形式存在,Fe2+-EDTA在中性/碱性条件下依然具有激活H2O2(式(2))并氧化降解核酸链的能力[9]。在中性条件下,添加NTA(氨三乙酸),TA(对苯二甲酸)等络合剂的芬顿体系可快速降解新诺明(pH=7.0)[10]。然而,络合剂与亚铁离子配比至少为1∶1,这表明将向待处置污水中引入大量的有机物,且络合剂与芬顿反应处置后的Fe3+形成的Fe3+-EDTA提高了体系内去除Fe3+的难度。CHEN等[11]向芬顿体系中投加还原剂(羟胺、NH2OH、HA)以降低铁离子用量,式(1)中失活的Fe3+可被羟胺重新转化成具有活性的Fe2+(式(3)~式(4)),故该强化体系能以痕量铁(2 mg∙L−1)持续驱动芬顿反应的进行与·OH的持续生成[11-12];相似的方法也用于持续驱动Fe2+/过一硫酸根体系和Fe2+/过二硫酸根体系[13-14]。
在后续研究中发现,体系内的羟胺并不会生成对水体健康有害的NO3−和NO2−,而是转化成N2O(式(5)),因此,其不会有二次污染。考虑到羟胺的强还原性,羟胺加入到Fe2+-EDTA/H2O2体系内或许可以实现Fe2+-EDTA的再生,最终实现中性/碱性条件下活性氧自由基(·OH)的持续生成。
基于以上研究结果,本研究拟通过在芬顿体系中投加羟胺与EDTA,以伊文思蓝为·OH的指示剂,考察强化后的芬顿体系持续产生·OH的能力。伊文思蓝可与H2O2、过硫酸盐等过氧化物共存,且其与·OH可快速反应,因此,本研究中伊文思蓝的降解率可反映芬顿体系中·OH的生成情况。本文分析了溶液pH、铁离子浓度、H2O2浓度、EDTA浓度和伊文思蓝浓度对降解过程的影响,优化了体系对伊文思蓝降解的最佳条件,并通过电子自旋共振(ESR)技术和苯基甲基亚砜(PMSO)推测了体系中伊文思蓝的主要降解路径,从而确定该方法的稳定性,以期为芬顿反应在特定应用场景中的应用提供参考。
羟胺/EDTA协同强化芬顿反应的机理与动力学
Enhanced Fenton process by a synergistic effect of EDTA and hydroxylamine: Mechanism and kinetics
-
摘要: 经典芬顿反应(Fe2+/H2O2)在实际水处理中存在pH响应范围窄、亚铁盐投加量大和铁泥产量高等技术瓶颈问题。改用乙二胺四乙酸(EDTA)络合的亚铁离子(Fe2+-EDTA)做引发剂后,pH响应范围明显扩大,然而也引入了有机二次污染,同时提高了溶解铁的去除难度。在Fe2+-EDTA/H2O2体系中投加还原性的羟胺(HA),可将失活的Fe3+-EDTA转化成具有活性的Fe2+-EDTA,从而实现低铁投加量/低EDTA投加量条件下有机污染物的消除。结果表明:以伊文思蓝为模型污染物,HA/EDTA/芬顿体系的pH范围可扩大至7.0~9.0;铁离子和EDTA的最佳投料比为1∶1,H2O2的最佳投加量为0.5 mmol∙L−1,HA的最佳投加量为0.1 mmol∙L−1; HA/EDTA/芬顿体系中主要的活性物质为羟基自由基(·OH);苯基甲基亚砜(PMSO)的降解路径分析则证明了新体系中高价铁(FeIV)几乎不起任何作用。以上结果表明,将羟胺引入EDTA/芬顿体系后可同步降低铁离子与络合剂的使用量,故此体系改变了络合剂强化的芬顿反应中药剂投加量过大与后续铁离子不好处置的问题,可为进一步拓展芬顿反应的应用范围提供参考。
-
关键词:
- 芬顿反应 /
- 羟胺 /
- EDTA /
- pH范围 /
- Fe3+-EDTA/Fe2+-EDTA循环
Abstract: Traditional Fenton processes (Fe2+/H2O2) have long suffered from the impractically narrow pH range (around pH 3.0), the addition of ferrous salt and production of a large mass of iron precipitates after neutralization. The employment of ethylene diamine tetraacetic acid (EDTA) for chelating Fe2+ as an initiator (Fe2+-EDTA) of Fenton process can extend the pH range, but it also causes secondary contamination and increases the difficulty on the subsequent removal of dissolved iron. In this study, hydroxylamine was employed for accelerating regeneration of Fe2+-EDTA from Fe3+-EDTA, resulting in continuous degradation of organic contaminants with low dosage of iron salt and EDTA. Using Evans Blue as radical probe, HA/EDTA/Fenton system could output oxidation ability at the pH range of 7.0-9.0; the optimal ratio of iron ions and EDTA was 1:1; taking the cost and efficiency into consideration, the optimal dosages of H2O2 and HA were 0.5 mmol∙L−1 and 0.1 mmol∙L−1, respectively. Quenching experiments, electron spin resonance analysis revealed hydroxyl radical (·OH) as main reactive oxygen species, while degradation analysis of Phenyl methyl sulfoxide (PMSO) excluded the role of iron-oxo (FeIV) in the system. The simultaneous addition of EDTA and HA could reduce the dosage of iron salt and chelating agents, further avoiding the subsequent problem such as larger doses of reagents and the downstream treatment of Fe3+-EDTA. The research can provide a reference for the extension of Fenton process application range.-
Key words:
- Fenton process /
- hydroxylamine /
- EDTA /
- pH range /
- Fe3+-EDTA/Fe2+-EDTA cycle
-
-
[1] HODGES B C, CATES E L, KIM J H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials[J]. Nature Nanotechnology, 2018, 13(8): 642-650. doi: 10.1038/s41565-018-0216-x [2] LEE J S, GUNTEN U V, KIM J H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks[J]. Environmental Science & Technology, 2020, 54(6): 3064-3081. [3] 姚梦东, 岳俊杰, 徐雪婧, 等. 球磨硫化零价铁活化过硫酸盐降解水体中有机氯农药[J]. 环境工程学报, 2021, 15(8): 2563-2575. doi: 10.12030/j.cjee.202103052 [4] 吕来, 胡春. 多相芬顿催化水处理技术与原理[J]. 化学进展, 2017, 29(9): 981-999. doi: 10.7536/PC170552 [5] 姜妍, 蒋林时, 苗时雨, 等. 紫外-Fenton法处理高盐有机废水[J]. 环境工程学报, 2016, 10(5): 2349-2354. doi: 10.12030/j.cjee.201412143 [6] 仙光, 张光明, 刘毓璨, 等. Fenton法处理电镀有机废水[J]. 环境工程学报, 2018, 12(4): 1007-1012. doi: 10.12030/j.cjee.201710049 [7] REN Y M, LIN L Q, MA J, et al. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M = Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water[J]. Applied Catalysis B: Environmental, 2015, 165: 572-578. doi: 10.1016/j.apcatb.2014.10.051 [8] SUN M, CHU C H, GENG F L, et al. Reinventing Fenton chemistry: Iron oxychloride nanosheet for pH-insensitive H2O2 activation[J]. Environmental Science & Technology Letters, 2018, 5(3): 186-191. [9] WENDY K P, TIMOTHY J M, THOMAS D T. What species is responsible for strand scission in the reaction of [FeIIEDTA]2- and H2O2 with DNA?[J]. Journal of the American Chemical Society, 1995, 117(24): 6428-643. doi: 10.1021/ja00129a002 [10] ANTONELL D L, RENATO F D, SANTIAGO E. Assessment of iron chelates efficiency for photo-Fenton at neutral pH[J]. Water Research, 2014, 61: 232-242. doi: 10.1016/j.watres.2014.05.033 [11] CHEN L W, MA J, LI X C, et al. Strong enhancement on Fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles[J]. Environmental Science & Technology, 2011, 45(9): 3925-3930. [12] ZHOU H Y, ZHANG H, HE Y L, et al. Critical review of reductant-enhanced peroxide activation processes: Trade-off between accelerated Fe3+/Fe2+ cycle and quenching reactions[J]. Applied Catalysis B:Environmental, 2021, 286: 119900. doi: 10.1016/j.apcatb.2021.119900 [13] ZOU J, MA J, LI X C, et al. Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine[J]. Environmental Science & Technology[J], 2013, 47(20): 11685-11691. [14] LI Z Y, WANG L, LIU Y L, et al. Unraveling the interaction of hydroxylamine and Fe(III) in Fe(II)/Persulfate system: A kinetic and simulating study[J]. Water Research, 2020, 168: 115093. doi: 10.1016/j.watres.2019.115093 [15] QIAO J L, FENG L Y, DONG H Y, et al. Overlooked role of sulfur-centered radicals during bromate reduction by sulfite[J]. Environmental Science & Technology, 2019, 53(17): 10320-10328. [16] PAN Y, SU H R, ZHU Y T, et al. CaO2 based Fenton-like reaction at neutral pH: Accelerated reduction of ferric species and production of superoxide radicals[J]. Water Research, 2018, 145: 731-740. doi: 10.1016/j.watres.2018.09.020 [17] ZENG H B, ZHANG G, JI Q H, et al. pH-independent production of hydroxyl radical from atomic H*-mediated electrocatalytic H2O2 reduction: A green Fenton process without byproducts[J]. Environmental Science & Technology, 2020, 54(22): 14725-14731. [18] 张娟娟, 刘蕴晗, 乔梦, 等. TiO2纳米管阳极光电催化氧化次磷酸盐同时阴极回收金属铜[J]. 环境工程学报, 2022, 16(4): 1145-1153. doi: 10.12030/j.cjee.202202092 [19] DONG H Y, LI Y, WANG S C, et al. Both Fe(IV) and radicals are active oxidants in the Fe(II)/peroxydisulfate process[J]. Environmental Science & Technology Letters, 2020, 7(3): 219-224. [20] WANG Z, JIANG J, PANG S Y, et al. Is sulfate radical really generated from peroxydisulfate activated by iron(II) for environmental decontamination?[J]. Environmental Science & Technology, 2018, 52(19): 11276-11284. [21] ZENG H B, LAN H C, AN X Q, et al. Insight into electroreductive activation process of peroxydisulfate for eliminating organic pollution: Essential role of atomic hydrogen[J]. Chemical Engineering Journal, 2021, 426: 128355. doi: 10.1016/j.cej.2020.128355