-
近年来,抗生素等药品和个人护理品(pharmaceutical and personal care products, PPCPs)在地表水和地下水环境样品中不断被检出,这说明其在水生生态系统中存在越来越广泛的分布[1-4],对水生生物和人类健康构成潜在威胁[5-6]。作为PPCP的典型代表之一,磺胺甲恶唑(sulfamethoxazole, SMX)是一种广泛应用的人、兽两用的磺胺类抗生素,由于其消费量巨大且不易降解,导致其在环境水体中广泛赋存[7],从而存在诱发细菌产生抗生素耐药基因的风险[8-9]。因此,开发SMX的有效降解方法很有必要。
高级氧化工艺(advanced oxidation processes, AOPs)是一种通过催化产生自由基等强活性氧物质(reactive oxygen species,ROS)来处理有机污染物的有效方法[10-13]。硫酸根自由基(SO4·−)由于具有较高的氧化还原电位(2.5~3.1 eV)、较长的半衰期(30~40 μs)和对芳烃环污染物具有较强的选择性氧化能力,近年来基于硫酸根自由基的高级氧化(SO4·−-based AOPs, SR-AOPs)技术在降解毒性有机污染物的研究中备受关注[14-15]。过一硫酸盐(peroxymonosulfate, PMS),可通过光化学、声化学和热活化、过渡金属(如钴、铁、银和铜)、碳质材料、电化学活化、碱性条件和氧化剂(如臭氧、过氧化氢、和过氧化钙)等多种途径破坏(氢化)过氧化键(O-O)活化生成SO4•−[15-16]。其中过渡金属钴(Co)活化PMS是目前产生SO4·−的最为高效的一种方法。有研究表明,Co(Ⅱ)/PMS体系在中性pH条件下的催化性能优于传统的芬顿(Fenton)反应,且试剂用量更少[17]。然而,直接使用Co(Ⅱ)作为均相催化剂通常存在可循环性低、Co(Ⅱ)污泥排放存在潜在风险等缺点[11]。为提高催化活性、稳定性和循环使用性能,通常采用其他载体负载Co来制备多相催化剂。常见的载体有碳材料、粘土、沸石和其他金属氧化物等。
近年来,基于静电纺丝工艺制备的碳纤维(carbon nanofibers, CNFs)材料因其制备方法简单、材料比表面积大、电子传输性能好引起了众多研究者的关注[18-19]。CNFs具有较高的长径比,有利于电子传输和反应物扩散,以此为载体可表现出优异的催化活性。目前,钴掺杂碳纳米纤维作为SR-AOPs的高效多相催化剂已有报道[18, 20]。LIN等[21]和ZHANG等[22]发现,负载Co与其他金属元素(Fe和Ag)的双金属纳米颗粒碳纳米纤维,在低剂量下表现出比单金属催化剂更好的性能,且能减少金属离子的浸出。然而,Co/Fe体系通常表现出高磁性和团聚,因此,不可避免地降低了催化活性[23-24];Co/Ag体系应用成本较高,不利于催化剂的广泛使用。Ti也是一种过渡金属,其氧化物具有良好的催化性,在水溶液中可产生氧自由基和羟基自由基等活性基团,当与Co复合时,有望进一步改善Co基催化剂的相关性能。
因此,本研究采用静电纺丝技术,以聚丙烯腈(PAN)为前驱体,适用一步法制备了Co/TiO2@CNFs复合纳米纤维薄膜,通过调整Co和TiO2的复合比例,优化了复合纤维膜的最佳合成工艺;以磺胺甲恶唑(SMX)作为目标污染物,考察了Co/TiO2@CNFs活化PMS降解SMX的效能,且探讨了可能的降解途径及机理。
载钴钛碳纳米纤维活化过一硫酸盐降解磺胺甲恶唑的效能及机理分析
Degradation efficiency and mechanism of sulfamethoxazole by activation of peroxymonosulfate via cobalt titanium-loaded carbon nanofibers
-
摘要: 本研究采用静电纺丝和热处理技术制备了一种网状负载钴钛双金属纳米颗粒碳纳米纤维催化剂(Co/TiO2@CNFs),并通过SEM、TEM、HRTEM、HAADF-STEM、元素映射、XRD、氮气吸脱附、TGA、拉曼光谱、FTIR、XPS、Zeta电位等手段对催化剂进行了表征和分析,通过批式降解实验优化了二氧化钛(TiO2)最佳负载量,并研究了催化剂投加量、PMS投加量、温度、pH、共存离子(Cl−、F−、HCO3−和H2PO4−)等因素对磺胺甲恶唑(SMX)降解性能的影响。结果表明,TiO2负载可提高催化剂的催化性能,TiO2与所制备催化剂的最佳质量比为0.1%;在催化剂投加量为0.1 g·L−1,PMS投加量为1 mmol·L−1时,Co/TiO2@CNFs在50 min内降解SMX≥99%;在pH为5.8~9内反应最佳;根据阿伦尼乌斯方程计算出反应体系的活化能为63.23 kJ·mol−1;催化剂在4种共存离子存在下表现出较好的催化性能;经5次循环后,Co/TiO2@CNFs催化降解性能仍保持较好。ESR分析和淬灭实验结果表明,4种活性物种(·OH、SO4·−、O2·−和1O2)参与到SMX的降解过程中,其中,1O2在Co/TiO2@CNFs活化PMS过程中起主导作用。Abstract: The catalytic activation of peroxymonosulfate (PMS) to generate free radicals has received a lot of attention in the environmental catalytic treatment of refractory pollutants. Electrostatic spinning and heat treatment procedures were used to manufacture a porous cobalt-titanium bimetallic nanoparticles supported carbon nanofibers catalyst (Co/TiO2@CNFs) in this research. SEM, TEM, HRTEM, HAADF-STEM, elemental mapping, XRD, nitrogen adsorption/desorption isotherms, TGA, Raman spectroscopy, FTIR, XPS, Zeta potential, and other methods were used to characterize the physical and chemical properties of catalysts. The optimal titanium dioxide (TiO2) loading capacity was explored by batch degradation experiment. The effects of catalyst dosage, PMS dosage, temperature, pH and coexisting ions (Cl−、F−、HCO3− and H2PO4−) on the degradation efficiency of sulfamethoxazole (SMX) were investigated. The results show that TiO2 supports could improve the catalytic performance of the catalyst, and the optimal mass ratio of TiO2 to catalyst was 0.1 %. When catalyst dosage was 0.1 g·L−1 and PMS dosage was 1 mmol·L−1, Co/TiO2@CNFs could degrade SMX≥99% within 50 minutes. The optimum pH value was 5.8-9. According to Arrhenius equation, the activation energy of the reaction system was 63.23 kJ·mol −1. The catalyst had a good catalytic performance under the condition of four coexisting ions. After 5 cycles, Co/TiO2@CNFs still maintained a good catalytic degradation performance. Four active species (·OH、SO4·−、O2·− and 1O2) were involved in the degradation of SMX by ESR analysis and quenching experiments, of which 1O2 played a dominant role in the Co/TiO2@CNFs activated PMS system. Finally, the possible pathway and reaction mechanism of SMX degradation in bimetallic co-catalytic system are proposed. The findings of this research provide a novel perspective on the application of advanced oxidation processes (AOPs) in environmental remediation.
-
Key words:
- peroxymonosulfate /
- electrospinning /
- carbon nanofibers /
- sulfamethoxazole /
- reaction mechanism.
-
表 1 Co@CNFs和X Co/TiO2@CNFs的N2吸脱附测试结果
Table 1. Results of N2 adsorption/desorption analysis of the Co@CNFs and X Co/TiO2@CNFs
材料 比表面积/
(m2·g−1)总孔容/
(cm3·g−1)t-图法微孔/
(cm3·g−1)介孔/
(cm3·g−1)孔径/
nmCo@CNFs 64.31 0.073 0.008 0.065 3.94 0.5Co/TiO2@CNFs 7.60 0.017 0.002 0.015 3.94 1Co/TiO2@CNFs 97.15 0.092 0.018 0.074 3.93 5Co/TiO2@CNFs 13.84 0.041 0.002 0.039 1.87 10Co/TiO2@CNFs 27.90 0.085 0.004 0.080 4.31 -
[1] HOU L, ZHANG H, WANG L, et al. Removal of sulfamethoxazole from aqueous solution by sono-ozonation in the presence of a magnetic catalyst[J]. Separation and Purification Technology, 2013, 117: 46-52. doi: 10.1016/j.seppur.2013.05.014 [2] YU X, SUI Q, LYU S, et al. Municipal solid waste landfills: An underestimated source of pharmaceutical and personal care products in the water environment[J]. Environment Science Technology, 2020, 54(16): 9757-9768. doi: 10.1021/acs.est.0c00565 [3] FEKADU S, ALEMAYEHU E, DEWIL R, et al. Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge[J]. Science of the Total Environment, 2019, 654: 324-337. doi: 10.1016/j.scitotenv.2018.11.072 [4] HIRSCH R, TERNES T, HABERER K, et al. Occurrence of antibiotics in the aquatic environment[J]. Science of the Total Environment, 1999, 225(1-2): 109-118. doi: 10.1016/S0048-9697(98)00337-4 [5] LI Y, SALLACH J B, ZHANG W, et al. Insight into the distribution of pharmaceuticals in soil-water-plant systems[J]. Water Research, 2019, 152: 38-46. doi: 10.1016/j.watres.2018.12.039 [6] SHANABLEH A, BHATTACHARJEE S, ALANI S, et al. Assessment of sulfamethoxazole removal by nanoscale zerovalent iron[J]. Science of the Total Environment, 2021, 761: 143307. doi: 10.1016/j.scitotenv.2020.143307 [7] TROVO A G, NOGUEIRA R F, AGUERA A, et al. Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation[J]. Water Research, 2009, 43(16): 3922-3931. doi: 10.1016/j.watres.2009.04.006 [8] LIU F, ZHOU H, PAN Z, et al. Degradation of sulfamethoxazole by cobalt-nickel powder composite catalyst coupled with peroxymonosulfate: Performance, degradation pathways and mechanistic consideration[J]. Journal of Hazardous Materials, 2020, 400: 123322. doi: 10.1016/j.jhazmat.2020.123322 [9] WALTER M V, VENNES J W. Occurrence of multiple-antibiotic-resistant enteric bacteria in domestic sewage and oxidation lagoons[J]. Applied Environmental Microbiology, 1985, 50(4): 930-933. doi: 10.1128/aem.50.4.930-933.1985 [10] 许晟硕, 钱征, 王龄侦, 等. 氮掺杂碳催化剂活化过一硫酸盐的活性位点分析及其对双酚A的降解机制[J]. 环境工程学报, 2022,16(2): 452-461. [11] ZENG H, DENG L, ZHANG H, et al. Development of oxygen vacancies enriched CoAl hydroxide@hydroxysulfide hollow flowers for peroxymonosulfate activation: A highly efficient singlet oxygen-dominated oxidation process for sulfamethoxazole degradation[J]. Journal of Hazardous Materials, 2020, 400: 123297. doi: 10.1016/j.jhazmat.2020.123297 [12] ANDREOZZI R, CAPRIO V, INSOLA A, et al. Advanced oxidation processes (AOP) for water purification and recovery[J]. Catalysis Today, 1999, 53(1): 51-59. doi: 10.1016/S0920-5861(99)00102-9 [13] ZHANG H, LI G, DENG L, et al. Heterogeneous activation of hydrogen peroxide by cysteine intercalated layered double hydroxide for degradation of organic pollutants: Performance and mechanism[J]. Journal of Colloid and Interface Science, 2019, 543: 183-191. doi: 10.1016/j.jcis.2019.02.059 [14] ZENG H, ZHANG W, DENG L, et al. Degradation of dyes by peroxymonosulfate activated by ternary CoFeNi-layered double hydroxide: Catalytic performance, mechanism and kinetic modeling[J]. Journal of Colloid and Interface Science, 2018, 515: 92-100. doi: 10.1016/j.jcis.2018.01.016 [15] DUAN X, YANG S, WACŁAWEK S, et al. Limitations and prospects of sulfate-radical based advanced oxidation processes[J]. Journal of Environmental Chemical Engineering, 2020, 8(4). [16] CAI T, LIU Y, WANG L, et al. Activation of persulfate by photoexcited dye for antibiotic degradation: Radical and nonradical reactions[J]. Chemical Engineering Journal, 2019: 375. [17] HU P, LONG M. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications[J]. Applied Catalysis B:Environmental, 2016, 181: 103-117. doi: 10.1016/j.apcatb.2015.07.024 [18] BAO Y, TIAN M, LUA S K, et al. Spatial confinement of cobalt crystals in carbon nanofibers with oxygen vacancies as a high-efficiency catalyst for organics degradation[J]. Chemosphere, 2020, 245: 125407. doi: 10.1016/j.chemosphere.2019.125407 [19] INAGAKI M, YANG Y, KANG F. Carbon nanofibers prepared via electrospinning[J]. Advanced Materials, 2012, 24(19): 2547-2566. doi: 10.1002/adma.201104940 [20] ZHU Z, JI C, ZHONG L, et al. Magnetic Fe-Co crystal doped hierarchical porous carbon fibers for removal of organic pollutants[J]. Journal of Materials Chemistry A, 2017, 5(34): 18071-18080. doi: 10.1039/C7TA03990E [21] LIN K A, YANG M T, LIN J T, et al. Cobalt ferrite nanoparticles supported on electrospun carbon fiber as a magnetic heterogeneous catalyst for activating peroxymonosulfate[J]. Chemosphere, 2018, 208: 502-511. doi: 10.1016/j.chemosphere.2018.05.127 [22] ZHANG Y, ZHANG B T, TENG Y, et al. Carbon nanofibers supported Co/Ag bimetallic nanoparticles for heterogeneous activation of peroxymonosulfate and efficient oxidation of amoxicillin[J]. Journal of Hazardous Materials, 2020, 400: 123290. doi: 10.1016/j.jhazmat.2020.123290 [23] YANG Z, LI Y, ZHANG X, et al. Sludge activated carbon-based CoFe2O4-SAC nanocomposites used as heterogeneous catalysts for degrading antibiotic norfloxacin through activating peroxymonosulfate[J]. Chemical Engineering Journal, 2020, 384: 123319. doi: 10.1016/j.cej.2019.123319 [24] CAI C, ZHANG H, ZHONG X, et al. Electrochemical enhanced heterogeneous activation of peroxydisulfate by Fe–Co/SBA-15 catalyst for the degradation of Orange II in water[J]. Water Research, 2014, 66: 473-485. doi: 10.1016/j.watres.2014.08.039 [25] CHLEBDA D K, JĘDRZEJCZYK R J, JODŁOWSKI P J, et al. Surface structure of cobalt, palladium, and mixed oxide-based catalysts and their activity in methane combustion studied by means of micro-Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2017, 48(12): 1871-1880. doi: 10.1002/jrs.5261 [26] SUN H, LIANG H, ZHOU G, et al. Supported cobalt catalysts by one-pot aqueous combustion synthesis for catalytic phenol degradation[J]. Journal of Colloid and Interface Science, 2013, 394: 394-400. doi: 10.1016/j.jcis.2012.11.017 [27] YANG Q, CHOI H, DIONYSIOU D D. Nanocrystalline cobalt oxide immobilized on titanium dioxide nanoparticles for the heterogeneous activation of peroxymonosulfate[J]. Applied Catalysis B:Environmental, 2007, 74(1/2): 170-178. doi: 10.1016/j.apcatb.2007.02.001 [28] WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059 [29] HUANG Y H, HUANG Y F, HUANG C I, et al. Efficient decolorization of azo dye Reactive Black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst[J]. Journal of Hazardous Materials, 2009, 170(2-3): 1110-1118. doi: 10.1016/j.jhazmat.2009.05.091 [30] QI C, LIU X, LIN C, et al. Degradation of sulfamethoxazole by microwave-activated persulfate: Kinetics, mechanism and acute toxicity[J]. Chemical Engineering Journal, 2014, 249: 6-14. doi: 10.1016/j.cej.2014.03.086 [31] ZHANG Q, CHEN J, DAI C, et al. Degradation of carbamazepine and toxicity evaluation using the UV/persulfate process in aqueous solution[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(4): 701-708. [32] AO X, LIU W. Degradation of sulfamethoxazole by medium pressure UV and oxidants: Peroxymonosulfate, persulfate, and hydrogen peroxide[J]. Chemical Engineering Journal, 2017, 313: 629-637. doi: 10.1016/j.cej.2016.12.089 [33] BUXTON G V, BYDDER M, SALMON G A, et al. The reactivity of chlorine atoms in aqueous solution. Part III. The reactions of Cl• with solutes[J]. Physical Chemistry Chemical Physics, 2000, 2(2): 237-245. doi: 10.1039/a907133d [34] YAN J, LI J, PENG J, et al. Efficient degradation of sulfamethoxazole by the CuO@Al2O3 (EPC) coupled PMS system: Optimization, degradation pathways and toxicity evaluation[J]. Chemical Engineering Journal, 2019, 359: 1097-1110. doi: 10.1016/j.cej.2018.11.074 [35] WANG S, LIU H, WANG J. Nitrogen, sulfur and oxygen co-doped carbon-armored Co/Co9S8 rods (Co/Co9S8@N-S-O-C) as efficient activator of peroxymonosulfate for sulfamethoxazole degradation[J]. Journal of Hazardous Materials, 2020, 387: 121669. doi: 10.1016/j.jhazmat.2019.121669 [36] LAI L, YAN J, LI J, et al. Co/Al2O3-EPM as peroxymonosulfate activator for sulfamethoxazole removal: Performance, biotoxicity, degradation pathways and mechanism[J]. Chemical Engineering Journal, 2018, 343: 676-688. doi: 10.1016/j.cej.2018.01.035 [37] AO X, LIU W, SUN W, et al. Mechanisms and toxicity evaluation of the degradation of sulfamethoxazole by MPUV/PMS process[J]. Chemosphere, 2018, 212: 365-375. doi: 10.1016/j.chemosphere.2018.08.031 [38] YANG S, WANG P, YANG X, et al. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide[J]. Journal of Hazardous Materials, 2010, 179(1-3): 552-558. doi: 10.1016/j.jhazmat.2010.03.039 [39] JI Y, XIE W, FAN Y, et al. Degradation of trimethoprim by thermo-activated persulfate oxidation: Reaction kinetics and transformation mechanisms[J]. Chemical Engineering Journal, 2016, 286: 16-24. doi: 10.1016/j.cej.2015.10.050 [40] WANG C, KIM J, KIM M, et al. Nanoarchitectured metal-organic framework-derived hollow carbon nanofiber filters for advanced oxidation processes[J]. Journal of Materials Chemistry A, 2019, 7(22): 13743-13750. doi: 10.1039/C9TA03128F [41] LIN K Y A, LIN T Y, LU Y C, et al. Electrospun nanofiber of cobalt titanate perovskite as an enhanced heterogeneous catalyst for activating peroxymonosulfate in water[J]. Chemical Engineering Science, 2017, 168: 372-379. doi: 10.1016/j.ces.2017.05.013