-
在污水处理工艺中,生物法具有友好、简单、廉价等优点。生物脱氮是我国污水处理领域的重要方法,其中厌氧氨氧化(anaerobic ammonium oxidation,anammox)工艺应用前景良好。与传统的硝化-反硝化脱氮技术相比,厌氧氨氧化具有无需供氧、节省能耗,以及自养脱氮、无需外加碳源、污泥产量低等优点[1]。基于anammox的城镇污水脱氮处理工艺主要有2种:主流工艺即在城镇污水处理工艺的主线部分(即主流污水)采用anammox工艺;侧流工艺即在污泥消化液、压滤液等侧流污水的处理中应用该工艺,其水量仅占污水处理厂总进水约2%。通常,侧流工艺处理的污水具有高温高氨氮的特点[2]。目前,国内学者对anammox的研究大多在实验室规模反应器中进行,而在污水处理厂其应用主要集中在处理高温、高氨氮城镇污水的侧流工艺。若将该工艺大规模应用于常温或低温、低氨氮的主流污水处理中尚需深入研究。
在实际工程中,厌氧氨氧化常与短程硝化(partial nitrification,PN)、反硝化(denitrification,DN)工艺组合应用。从反应器类型划分,这些组合工艺分为一体式和分体式2种。分体式工艺,即在前端增加1个将进水中部分氨氮转化为亚硝氮的处理单元,为后续厌氧氨氧化反应提供亚硝氮基质;一体式工艺,即将亚硝氮的积累与厌氧氨氧化反应设计在同一处理单元中以完成氮的去除。近年来,一体式厌氧氨氧化工艺受到越来越多学者的青睐。
本文在概述一体式厌氧氨氧化工艺的基础上,总结分体式与一体式厌氧氨氧化工艺在实际应用中的特点,再按照功能菌群的生长形态将一体式工艺系统中的污泥分为颗粒污泥、生物膜、悬浮污泥3类,并分别探讨其脱氮特征,在对新型一体式厌氧氨氧化脱氮工艺的不同生长系统中anammox反应的机理、特征、效能及其工程案例等进行详细阐述后,指出其在应用中的难点及关键点,并展望未来研究方向,以期为该技术的应用提供参考。
一体式厌氧氨氧化工艺系统的研究与应用进展
Research and application progress of integrated anammox process system
-
摘要: 厌氧氨氧化技术凭借无需投加碳源、节省能耗、污泥产量低等优势成为污水脱氮领域中具有创新性与高效性的研究之一。学者们对相关组合工艺的反应机理、微生物群落、应用形式等开展大量研究。相对于分体式厌氧氨氧化工艺,一体式工艺布局更紧凑,大大降低了设施建设和运营的成本。从工程应用角度梳理了一体式厌氧氨氧化工艺的优势,结合国内外一体式厌氧氨氧化工艺在城镇污水处理中的工程案例,从颗粒污泥、生物膜、悬浮污泥系统及主要功能菌的营养类型等方面对一体式工艺系统中厌氧氨氧化微生物的研究进展进行了综述,并阐述了不同一体化系统的工艺性能、应用情况及影响因素,最后探讨了一体式工艺在城镇污水处理中的应用瓶颈及发展方向,以期为一体式厌氧氨氧化工艺的工程应用提供参考。Abstract: Anaerobic ammonium oxidation (anammox) technology has become one of the most innovative and efficient researches in the field of wastewater deammonification due to its advantages such as no need to add carbon sources, energy saving and low sludge yield. Researchers have carried out a lot of research on reaction mechanism, microbial community, application form Compared to the the split anammox process, the layou of integrated process is more compact, which significantly reduces the cost of infrastructure and operation. In this paper, the advatages of integrated anammox technology were summarized from the point of engineering application. Combined with the engineering cases of integrated anammox process in municipal wastewater at home and abroad, the research progress of anammox microorganisms in integrated process system was reviewed from the aspects of granular sludge, biofilm, suspended sludge system and the nutrition type of main functional bacteria. The process performance, application and influence factors of different integrated process were also discussed. The application bottleneck and development direction of the integrated process in urban sewage treatment were discussed in order to provide reference for engineering application of the integrated anammox process.
-
Key words:
- anammox /
- integrated /
- granular sludge /
- biofilm /
- suspended sludge /
- engineering application
-
图 2 PN/A-PDN/A工艺:单级SBR反应器组合工艺[34]
Figure 2. PN/A-PDN/A process: combined process of single stage SBR reactor
图 3 膜曝气生物反应器及内部反应示意图[45]
Figure 3. Schematic diagram of membrane aerated bioreactor and internal reaction
表 1 一体式和分体式厌氧氨氧化工艺的运行状况对比
Table 1. Comparison of operation status of integral and separate anammox processes
工艺类型 潜在游离氨毒性 潜在亚硝
酸盐毒性pH敏感性 温度敏感性 菌群复杂性 控制NOB
生长的难度装置复杂性 操作复杂性 基础设施成本 N2O排放量 一体式工艺 在温度(30±1)℃、pH 7~8的条件下,CANON颗粒污泥系统在游离氨(FA)为34、20、10 mg·L−1的条件下运行稳定[18] 一体式反应器中PN反应产生的亚硝酸盐被持续消耗,能有效避免因亚硝酸盐积累造成的抑制[20] 适宜的pH需同时兼顾PN与anammox反应,取交集。DEMON过程对pH带宽非常敏感。若pH带宽大于0.02,会导致系统不稳定[22] 在中低温下处理高氨氮污水,在20 ℃时及相同操作条件下,一体式系统的NLR为分体式系统的10倍,但降温至15 ℃时,NRR迅速下降[5, 16] AnAOB、AOB、NOB、异养菌(Heterotrophic bacteria,HB)等同时存在于同一体系 同时考虑AOB、AnAOB与NOB的协同作用,不可避免NOB与anammox竞争[23−24] 一个独立的反应器 与菌群复杂性、运行参数对系统的影响均有关 实际应用中,由于一体式基础设施成本低,故应用广泛[5−6] 总氮负荷的0.4%~1.3%[8−10] 分体式工艺 FA对AnAOB和氨氧化菌(ammonia oxidizing bacteria,AOB)产生抑制作用的浓度分别为50 ~178 mg·L−1和10 ~150 mg·L−1[19] 亚硝酸盐浓度为16 mmol·L−1时,50%的anammox活性被抑制[21] 分别考虑PN与anammox反应适宜的pH,互不干扰 在中低温下处理高氨氮污水,在20 ℃时以及相同操作条件下,一体式系统的NLR为分体式系统的10倍,但降温至15 ℃时,NRR迅速下降[5, 16] AnAOB与AOB、NOB、HB等分别存在于2个体系 主要在PN反应器中抑制NOB,不会在anammox反应器中竞争基质 [25] 2个独立的反应器。在实际应用中,短程硝化反应器之后可能需要设置沉淀池[26] 与菌群复杂性、运行参数对系统的影响均有关 与装置的复杂性有关 总氮负荷的2.3%~6.6%[11−12] 表 2 一体式厌氧氨氧化生长系统比较
Table 2. Comparison of integrated anammox growth systems
污泥形态 AnAOB
存在形式生物质
保留能力菌群
复杂性冲洗NOB
的难度扩散能力 DO忍耐力 AnAOB活性 颗粒污泥 颗粒污泥、
絮体高 高 可通过固定化细菌冲刷NOB DO扩散受到限制[52] AnAOB对DO有更高的耐受力[41] 保持生物量和活性平衡的理想条件[35] 生物膜 生物膜 高 高 可通过固定化细菌冲刷NOB DO、亚硝基质扩散速率受到限制[52] 外层的AOB层可以保护AnAOB免受氧的侵害[42] 较厚的生物膜会抑制AOB和AnAOB的活性[50] 悬浮污泥 絮体、颗粒污泥/生物膜 适中 高 悬浮污泥系统的污泥龄期为淘洗NOB提供了另一种选择 结构松散的悬浮絮凝体在基质从液相向絮凝体的输送和扩散方面具有优势[53, 54] 扩散能力较强,对DO浓度的变化敏感 悬浮和游离的AnAOB有更高的活性[52] -
[1] 王刚, 高会杰, 孙丹凤, 等. 厌氧氨氧化技术在废水脱氮领域的应用进展[J]. 化工环保. 2020, 40(2): 111-117. [2] 谢军祥, 姜滢, 常尧枫, 等. 城镇生活污水厌氧氨氧化处理的研究进展[J]. 化工进展. 2020, 39(10): 4175-4184. [3] ZHAO Z C, XIE G J, LIU B F, et al. A review of quorum sensing improving partial nitritation-anammox process: Functions, mechanisms and prospects[J]. The Science of the total environment, 2021, 765: 142703 [4] WANG Y M, LIN Z Y, HE L, et al. Simultaneous partial nitrification, anammox and denitrification (SNAD) process for nitrogen and refractory organic compounds removal from mature landfill leachate: Performance and metagenome-based microbial ecology[J]. Bioresource Technology, 2019, 294: 122166 [5] CAO Y, LOOSDRECHT M C, DAIGGER G T. Mainstream partial nitritation-anammox in municipal wastewater treatment: status, bottlenecks, and further studies[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1365-1383 [6] LACKNER S, GILBERT E M, VLAEMINCK S E, et al. Full-scale partial nitritation/anammox experiences–An application survey[J]. Water Research, 2014, 55: 292-303 [7] CONNAN R, DABERT P, MOYA-ESPINOSA M, et al. Coupling of partial nitritation and anammox in two- and one-stage systems: Process operation, N2O emission and microbial community[J]. Journal of Cleaner Production, 2018, 203: 559-573 [8] WEISSENBACHER N, TAKACS I, MURTHY S, et al. Gaseous nitrogen and carbon emissions from a full-scale deammonification plant[J]. Water Environment Research, 2010, 82(2): 169-175 [9] JOSS A, SALZGEBER D, EUGSTER J, et al. Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR[J]. Environmental Science & Technology, 2009, 43(14): 5301-5306 [10] KAMPSCHREUR M J, POLDERMANS R, KLEEREBEZEM R, et al. Emission of nitrous oxide and nitric oxide from a full-scale single-stage nitritation-anammox reactor[J]. Water Science and Technology, 2009, 60(12): 3211-3217 [11] KAMPSCHREUR M J, STAR W R L, WIELDERS H A, et al. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment[J]. Water Research, 2008, 42(3): 812-826 [12] DESLOOVER J, CLIPPELEIR H, BOECKX P, et al. Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions[J]. Water Research, 2011, 45(9): 2811-2821 [13] LIU Y, NIU Q G, WANG S P, et al. Upgrading of the symbiosis of Nitrosomanas and anammox bacteria in a novel single-stage partial nitritation-anammox system: Nitrogen removal potential and Microbial characterization[J]. Bioresource Technology, 2017, 244: 463-472 [14] WANG X L, GAO D W. The transformation from anammox granules to deammonification granules in micro-aerobic system by facilitating indigenous ammonia oxidizing bacteria[J]. Bioresource Technology, 2018, 250: 439-448 [15] CHEN R, JI J Y, CHEN Y J, et al. Successful operation performance and syntrophic micro-granule in partial nitritation and anammox reactor treating low-strength ammonia wastewater[J]. Water Research, 2019, 155: 288-299 [16] VÁZQUEZ-PADÍN J R, FERNÁNDEZ I, MORALES N, et al. Autotrophic nitrogen removal at low temperature[J]. Water Science and Technology, 2011, 63(6): 1282-1288 [17] VLAEMINCK S E, CLIPPELEIR H, VERSTRAETE W. Microbial resource management of one-stage partial nitritation/anammox[J]. Microbial Biotechnology, 2012, 5(3): 433-448 [18] 韩晓宇, 孙延芳, 张树军, 等. 进水氨氮浓度对两种污泥系统CANON工艺的冲击影响[J]. 哈尔滨工业大学学报. 2018, 50(2): 40-45. [19] TOMASZEWSKI M, CEMA G, ZIEMBIŃSKA-BUCZYŃSKA A. Influence of temperature and pH on the anammox process: A review and meta-analysis[J]. Chemosphere, 2017, 182: 203-214 [20] JOSS A, SALZGEBER D, EUGSTER J, et al. Full-Scale Nitrogen Removal from Digester Liquid with Partial Nitritation and Anammox in One SBR[J]. Environmental Science & Technology, 2009, 43(14): 5301-5306 [21] OSHIKI M, SHIMOKAWA M, FUJII N, et al. Physiological characteristics of the anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sinica’[J]. Microbiology, 2011, 157(6): 1706-1713 [22] JAROSZYNSKI L W, OLESZKIEWICZ J A. Autotrophic ammonium removal from reject water: partial nitrification and anammox in one-reactor versus two-reactor systems[J]. Environmental Technology, 2011, 32(3-4): 289-294 [23] SCHRAA O, ROSENTHAL A, WADE M J, et al. Assessment of aeration control strategies for biofilm-based partial nitritation/anammox systems[J]. Water Science and Technology, 2020, 81(8):1757-1765 [24] De CLIPPELEIR H, VLAEMINCK S E, De WILDE F, et al. One-stage partial nitritation/anammox at 15 °C on pretreated sewage: feasibility demonstration at lab-scale[J]. Applied Microbiology and Biotechnology, 2013, 97(23): 10199-10210 [25] PÉREZ J, LOTTI T, KLEEREBEZEM R, et al. Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: A model-based study[J]. Water Research, 2014, 66: 208-218 [26] ÇELEN-ERDEM İ, KURT E S, BOZÇELIK B, et al. Upflow packed bed Anammox reactor used in two-stage deammonification of sludge digester effluent[J]. Water Science and Technology, 2018, 78(9): 1843-1851 [27] GUO Y, XIE C L, CHEN Y J, et al. Achieving superior nitrogen removal performance in low-strength ammonium wastewater treatment by cultivating concentrated, highly dispersive, and easily settleable granule sludge in a one-stage partial nitritation/anammox-HAP reactor[J]. Water Research, 2021, 200: 117217 [28] WANG L, ZHENG P, CHEN T T, et al. Performance of autotrophic nitrogen removal in the granular sludge bed reactor[J]. Bioresource Technology, 2012, 123: 78-85 [29] WANG S P, LIU Y, NIU Q G, et al. Nitrogen removal performance and loading capacity of a novel single-stage nitritation-anammox system with syntrophic micro-granules[J]. Bioresource Technology, 2017, 236: 119-128 [30] LI X J, SUNG S. Development of the combined nitritation-anammox process in an upflow anaerobic sludge blanket (UASB) reactor with anammox granules[J]. Chemical Engineering Journal, 2015, 281: 837-843 [31] QIAN F Y, GEBREYESUS A T, WANG J F, et al. Single-stage autotrophic nitrogen removal process at high loading rate: granular reactor performance, kinetics, and microbial characterization[J]. Applied Microbiology and Biotechnology, 2018, 102(5): 2379-2389 [32] LIU W R, WANG Q, SHEN Y L, et al. Enhancing the in-situ enrichment of anammox bacteria in aerobic granules to achieve high-rate CANON at low temperatures[J]. Chemosphere, 2021, 278: 130395 [33] LIU T, MA B, CHEN X M, et al. Evaluation of mainstream nitrogen removal by simultaneous partial nitrification, anammox and denitrification (SNAD) process in a granule-based reactor[J]. Chemical Engineering Journal, 2017, 327: 973-981 [34] LI J L, PENG Y Z, ZHANG L, et al. Improving efficiency and stability of anammox through sequentially coupling nitritation and denitritation in a single-stage bioreactor[J]. Environmental Science & Technology, 2020, 54(17): 10859-10867 [35] VLAEMINCK S E, TERADA A, SMETS B F, et al. Aggregate size and architecture determine microbial activity balance for one-stage partial nitritation and anammox[J]. Applied and Environmental Microbiology, 2010, 76(3): 900-909 [36] WANG L, ZHENG P, XING Y T, et al. Effect of particle size on the performance of autotrophic nitrogen removal in the granular sludge bed reactor and microbiological mechanisms[J]. Bioresource Technology, 2014, 157: 240-246 [37] REN Y H, LI D, LI X K, et al. High-rate nitrogen removal and microbial community of an up-flow anammox reactor with ceramics as biomass carrier[J]. Chemosphere, 2014, 113: 125-131 [38] WANG X, WANG T, YUAN L Z, et al. One-step start-up and subsequent operation of CANON process in a fixed-bed reactor by inoculating mixture of partial nitrification and Anammox sludge[J]. Chemosphere, 2021, 275: 130075 [39] GONG Z, YANG F L, LIU S T, et al. Feasibility of a membrane-aerated biofilm reactor to achieve single-stage autotrophic nitrogen removal based on Anammox[J]. Chemosphere, 2007, 69(5): 776-784 [40] 武文君, 刘秀红, 崔斌, 等. 溶解氧对Anammox滤池内功能菌群及活性的影响[J]. 中国环境科学. 2021, 41(3): 1415-1421. [41] JIANG H, PENG Y Z, LI X Y, et al. Advanced nitrogen removal from mature landfill leachate via partial nitrification-Anammox biofilm reactor (PNABR) driven by high dissolved oxygen (DO): Protection mechanism of aerobic biofilm[J]. Bioresource Technology, 2020, 306: 123119 [42] WINKLER M K H, KLEEREBEZEM R, KUENEN J G, et al. Segregation of biomass in cyclic anaerobic/aerobic granular sludge allows the enrichment of anaerobic ammonium oxidizing bacteria at low temperatures[J]. Environmental Science & Technology, 2011, 45(17): 7330-7337 [43] VANGSGAARD A K, MAURICIO-IGLESIAS M, GERNAEY K V, et al. Sensitivity analysis of autotrophic N removal by a granule based bioreactor: Influence of mass transfer versus microbial kinetics[J]. Bioresource Technology, 2012, 123: 230-241 [44] 杨庆, 周桐, 刘秀红, 等. 常温下接种回流污泥实现BAF一体化自养脱氮工艺[J]. 化工学报. 2017, 68(5): 2081-2088. [45] AUGUSTO M R, CAMILOTI P R, SOUZA T S O D. Fast start-up of the single-stage nitrogen removal using anammox and partial nitritation (SNAP) from conventional activated sludge in a membrane-aerated biofilm reactor[J]. Bioresource Technology, 2018, 266: 151-157 [46] CHEN H, LIU S T, YANG F L, et al. The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal[J]. Bioresource Technology, 2009, 100(4): 1548-1554 [47] 薛嘉俊, 张绍青, 张立秋, 等. 火山岩填料曝气生物滤池的SNAD工艺启动特性及功能菌丰度演替[J]. 环境科学. 2020, 41(6): 2796-2804. [48] ZHANG Z P, ADAV S S, SHOW K, et al. Characteristics of rapidly formed hydrogen-producing granules and biofilms[J]. Biotechnology and Bioengineering, 2008, 101(5): 926-936 [49] PENG L, LIU Y W, NI B J. Nitrous oxide production in completely autotrophic nitrogen removal biofilm process: A simulation study[J]. Chemical Engineering Journal, 2016, 287: 217-224 [50] TERADA A, YAMAMOTO T, IGARASHI R, et al. Feasibility of a membrane-aerated biofilm reactor to achieve controllable nitrification[J]. Biochemical Engineering Journal, 2006, 28(2): 123-130 [51] LIU T, QUAN X, LI D. Evaluations of biofilm thickness and dissolved oxygen on single stage anammox process in an up-flow biological aerated filter[J]. Biochemical Engineering Journal, 2017, 119: 20-26 [52] STAR W R L, ABMA W R, BLOMMERS D, et al. Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam[J]. Water Research, 2007, 41(18): 4149-4163 [53] GILBERT E M, AGRAWAL S, SCHWARTZ T, et al. Comparing different reactor configurations for Partial Nitritation/Anammox at low temperatures[J]. Water Research, 2015, 81: 92-100 [54] PÉREZ J, PICIOREANU C,LOOSDRECHT M. Modeling biofilm and floc diffusion processes based on analytical solution of reaction-diffusion equations[J]. Water Research, 2005, 39(7): 1311-1323 [55] WINKLER M K H, KLEEREBEZEM R, LOOSDRECHT M C M. Integration of anammox into the aerobic granular sludge process for main stream wastewater treatment at ambient temperatures[J]. Water Research, 2012, 46(1): 136-144 [56] LI J L, PENG Y Z, ZHANG Q, et al. Rapid enrichment of anammox bacteria linked to floc aggregates in a single-stage partial nitritation-anammox process: Providing the initial carrier and anaerobic microenvironment[J]. Water Research, 2021, 191: 116807 [57] MIAO Y Y, ZHANG L, YANG Y D, et al. Start-up of single-stage partial nitrification-anammox process treating low-strength swage and its restoration from nitrate accumulation[J]. Bioresource Technology, 2016, 218: 771-779 [58] CHU Z R, WANG K, LI X K, et al. Microbial characterization of aggregates within a one-stage nitritation–anammox system using high-throughput amplicon sequencing[J]. Chemical Engineering Journal, 2015, 262: 41-48 [59] LAURENI M, WEISSBRODT D G, VILLEZ K, et al. Biomass segregation between biofilm and flocs improves the control of nitrite-oxidizing bacteria in mainstream partial nitritation and anammox processes[J]. Water Research, 2019, 154: 104-116 [60] YANG S H, PENG Y Z, ZHANG L, et al. Autotrophic nitrogen removal in an integrated fixed-biofilm activated sludge (IFAS) reactor: Anammox bacteria enriched in the flocs have been overlooked[J]. Bioresource Technology, 2019, 288: 121512 [61] ZHANG L, ZHANG S J, PENG Y Z, et al. Nitrogen removal performance and microbial distribution in pilot- and full-scale integrated fixed-biofilm activated sludge reactors based on nitritation-anammox process[J]. Bioresource Technology, 2015, 196: 448-453 [62] ANJALI G, SABUMON P C. Development of simultaneous partial nitrification, anammox and denitrification (SNAD) in a non-aerated SBR[J]. International Biodeterioration & Biodegradation, 2017, 119: 43-55 [63] WANG C, LIU S T, XU X C, et al. Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor[J]. Chemosphere, 2018, 203: 457-466