-
厌氧发酵技术是目前有机固体废弃物资源化利用最为常用的处理工艺,其中,干法厌氧发酵工艺因具有原料利用范围广、占地小、池容产气率高以及无沼液产生等优点[1],在国内外农业废弃物处置、餐厨垃圾处理等领域得到了广泛应用[2]。目前,我国已开展大量关于玉米、水稻等秸秆干法厌氧发酵小试实验研究,并在黑龙江、上海、江苏等地实现了工程应用[3]。除预处理、物料配比、温度、停留时间等主要控制参数外,搅拌也会对厌氧发酵效率产生重要影响[4]。沼气工程运行过程中搅拌工艺的选择十分重要,适当的搅拌可促进传质传热、提高有机物的降解转化效率以及沼气逸出,同时也是直接影响工程产气效率和优化能源产出消耗的重要手段之一[5]。
干法厌氧发酵工程中常用的搅拌方式有机械搅拌、气动搅拌和水力搅拌,因各具优缺点,故这几种搅拌方式适用的领域不尽相同。针对搅拌对干法厌氧发酵过程的影响,RICO等[6]进行了水力搅拌下牛粪厌氧发酵的中试实验,结果表明,在较长的水力停留时间下,水力搅拌对反应器几乎不产生影响;LATHA等[7]研究了不同搅拌方式对餐厨垃圾与污泥共发酵的性能影响,结果表明,沼气搅拌方式下的产气量较机械搅拌上升了31%;NANDI等[8]研究了机械搅拌对牛粪厌氧发酵的影响,发现与不搅拌的反应器相比,沼气产量和甲烷体积分数仅提高了2%和3%。搅拌方式对厌氧发酵效率影响受制于不同类型底物、反应器性能、运行条件等[9]。目前大多数研究集中于对餐厨垃圾、畜禽粪便等匀质度高的物料,但关于搅拌对秸秆类废弃物为主的发酵物料影响研究却鲜有报道。秸秆类农业废弃物密度小、流动性差,厌氧发酵过程中会造成物料分层和表面结垢等现象[10],且传统发酵罐内存在“死角”,易使局部区域中间代谢产物过度积累,降低发酵效率[11]。因此,有必要探索如何通过优化搅拌方式来克服上述问题。
考虑到搅拌方式的改进优化对提高秸秆类农业废弃物干法厌氧发酵效率具有的直接影响,本研究基于长三角地区开展的稻秸干法厌氧发酵的最佳工艺参数 [12-13],并借鉴常见的横卧推流式中试厌氧反应器,通过改进框型叶片机械搅拌及增加前后端气动搅拌组件,设置机械搅拌、全程气动搅拌和前端气动搅拌3种搅拌方式,考察连续进出料条件下单一搅拌方式对稻秸干法厌氧发酵产气规律、底物降解特性及系统稳定性的影响,并据此进一步优化搅拌组合工艺,综合考察发酵效率和能源消耗情况,以期为稻秸轻质纤维类农业废弃物干法厌氧发酵工程中的搅拌方式改进提供技术参考。
中试条件下稻秸干法厌氧发酵搅拌方式的优化
Optimization of stirring methods for rice straw dry anaerobic digestion under pilot test
-
摘要: 针对秸秆类农业废弃物干法厌氧发酵过程中易产生物料分层、表面结垢以及存在“死角”等问题,通过改进横卧推流式中试厌氧反应器搅拌工艺,探索了连续运行条件下机械搅拌、前端气动搅拌和全程气动搅拌等3种单一搅拌方式对稻秸干法厌氧发酵产气规律、底物降解特性及系统稳定性的影响,并通过进一步设置不同的搅拌频次优化了机械搅拌和前端气动搅拌组合工艺,综合考察了发酵效率和能源消耗情况。结果表明,在单一搅拌工艺条件下,稻秸干法厌氧发酵40 d总产气量呈现出“机械搅拌>前端气动搅拌>全程气动搅拌”的规律,分别为75.5、66.5和61.9 m3,对应的单位VS产气量分别为441.9、389.3和362.3 L·kg−1,这说明采用改进型框型叶片的机械搅拌可有效翻动物料,以促进其与发酵液的充分接触。在进一步优化“机械+前端气动”的组合搅拌工艺后发现,稻秸40 d产气量与单一机械搅拌模式较为接近,尤其是“机械搅拌(每天4次)+前端气动搅拌(每天4次)”的组合搅拌方式,单位VS产气量高达447.2 L·kg −1,纤维素和半纤维素降解率分别可达14.9%和15.1%;但从能源损耗角度来看,“机械搅拌(每天2次)+前端气动搅拌(每天4次)”的组合搅拌方式中能耗最低,仅为单一机械搅拌方式能耗的约40%。在稻秸干法厌氧发酵工程实际运行过程中,可根据厌氧发酵效率和能耗节省需求,因地制宜地选择合适的组合搅拌工艺。本研究结果可为木质纤维素类废弃物干法厌氧发酵工程中的搅拌方式改进提供参考。Abstract: To solve the problems of stratification, surface scaling and “dead corners” of lignocellulosic wastes during the dry anaerobic digestion process, the stirring device was improved and the continuous operation was conducted on a horizontal push-flow pilot reactor in this study. Through setting three different stirring methods such as mechanical stirring, front-end pneumatic stirring and whole-process pneumatic stirring, the characteristics of gas production and substrate degradation were explored. The combined process of mechanical stirring and front-end pneumatic stirring was optimized, and the fermentation efficiency and energy consumption were comprehensively investigated. Results showed that the total biogas production of rice straw anaerobic fermentation for 40 days under different stirring methods showed the rule of impeller stirring> front pneumatic stirring> full pneumatic stirring. The yield was 75.5、66.5 and 61.9 m3 and the corresponding unit volatile solids biogas production volume was 441.9、389.3 and 362.3 L·kg−1, respectively. It indicated that impeller stirring with improved frame-shaped blades can effectively stir materials and make that contact with the fermentation broth fully. After further optimizing the stirring time of the mechanical and front pneumatic combined-stirring, the biogas production of rice straw anaerobic fermentation for 40 days under these stirring methods was near to the single-stirring. Especially the combined stirring method of mechanical stirring (4 times every day) and front-end pneumatic stirring (4 times every day), the gas production volume of unit volatile solid was 447.2 L·kg−1, cellulose and the degradation rate of hemicellulose could reach 14.88% and 15.06%. However, as far as concerning energy consumption, the combined stirring method of mechanical stirring (2 times every day) and front-end pneumatic stirring (4 times every day) had the lowest energy consumption, which was only 40% of the energy consumption of a single mechanical stirring method. Therefore, during the actual operation of the rice straw dry anaerobic fermentation project, a suitable combined-stirring method could be selected according to the anaerobic fermentation biogas efficiency and energy-saving requirements. The above results can provide a reference for the improvement of stirring methods in lignocellulosic wastes dry anaerobic digestion.
-
Key words:
- rice straw /
- dry anaerobic digestion /
- pilot test /
- mechanical stirring /
- pneumatic stirring /
- fermentation efficiency
-
表 1 供试材料理化性质
Table 1. Physical and chemical properties of raw materials
供试材料 总固体质量分数/% 挥发性固体质量分数/% 纤维素质量分数/% 半纤维素质量分数/% pH C/N 水稻秸秆 90.5 87.6 37.5 22.0 − 64 猪粪 22.7 86.6 − − 8.1 9 沼液 4.0 86.0 − − 7.2 − 表 2 不同搅拌方式下的有机组分去除效率
Table 2. Removal efficiency of organic components under different stirring methods
运行阶段 VS去除率/% 纤维素降解率/% 半纤维素降解率/% Ⅱ.1 37.3±2.1 14.7±1.1 14.1±1.2 Ⅱ.2 30.6±2.1 12.9±0.6 10.3±0.9 Ⅱ.3 32.5±3.1 12.7±0.8 13.1±0.8 表 3 组合搅拌方式下的产气效率及有机组分降解效率
Table 3. Gas production efficiency and organic component degradation efficiency under combined stirring methods
运行阶段 产气情况 有机组分降解情况 单位VS产气量/(L·kg−1) 甲烷体积分数/% 总产气量/m3 VS去除率/% 纤维素降解率/% 半纤维素降解率/% Ⅲ.1 447.2 63.7±3.7 76.4 41.4±1.2 14.9±0.9 15.1±1.6 Ⅲ.2 437.3 63.8±1.2 74.7 38.2±1.9 13.7±1.5 15.3±1.3 Ⅲ.3 421.5 64.5±1.8 72.0 35.3±1.4 12.3±1.3 15.9±2.1 表 4 不同搅拌工艺条件下年耗能对比测算
Table 4. Comparison and estimation table of annual energy consumption under different stirring methods
运行阶段 运行耗能/ kwh 搅拌耗能/kwh 搅拌耗能占比/% Ⅱ.1 6570 3351 51 Ⅲ.1 5475 2311 42 Ⅲ.2 4927 1825 37 Ⅲ.3 4380 1388 31 注:搅拌能耗占比指搅拌能耗占中试装置运行过程中总耗能的比例。 -
[1] SUN M X, XU X B, WANG C D, et al. Environmental burdens of the comprehensive utilization of straw: Wheat straw utilization from a life-cycle perspective[J]. Journal of Cleaner Production, 2020, 259: 120702. doi: 10.1016/j.jclepro.2020.120702 [2] 李欣, 周知戬, 谭祎琦. 农业废弃物资源化利用现状及对策分析——以秸秆、稻壳、畜禽粪便为例[J]. 现代农业研究, 2020, 26(5): 125-126. doi: 10.3969/j.issn.1674-0653.2020.05.055 [3] 李冰峰, 张大雷. 干式厌氧发酵技术现状与国内应用项目简介[J]. 可再生能源, 2021, 39(3): 294-299. doi: 10.3969/j.issn.1671-5292.2021.03.002 [4] DAI X H, HUA Y, DAI L L, et al. Particle size reduction of rice straw enhances methane production under anaerobic digestion[J]. Bioresource Technology, 2019, 293: 122043. doi: 10.1016/j.biortech.2019.122043 [5] LINDMARK J, THORIN E, BEL FDHILA R, et al. Effects of mixing on the result of anaerobic digestion: Review[J]. Renewable and Sustainable Energy Reviews, 2014, 40: 1030-1047. doi: 10.1016/j.rser.2014.07.182 [6] RICO C, RICO J L, MUNOZ N, et al. Effect of mixing on biogas production during mesophilic anaerobic digestion of screened dairy manure in a pilot plant[J]. Engineering in Life Sciences, 2011, 11(5): 476-481. doi: 10.1002/elsc.201100010 [7] LATHA K, VELRAJ R, SHANMUGAM P, et al. Mixing strategies of high solids anaerobic co-digestion using food waste with sewage sludge for enhanced biogas production[J]. Journal of Cleaner Production, 2019, 210: 388-400. doi: 10.1016/j.jclepro.2018.10.219 [8] NANDI R, SAHA C K, HUDA M S, et al. Effect of mixing on biogas production from cow dung[J]. Eco-friendly Agril J 2017, 10(02): 07-13. [9] ROCAMORA I, WAGLAND S T, VILLA R, et al. Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance[J]. Bioresource Technology, 2020, 299: 122681. doi: 10.1016/j.biortech.2019.122681 [10] YANG H N, DENG L W. Using air instead of biogas for mixing and its effect on anaerobic digestion of animal wastewater with high suspended solids[J]. Bioresource Technology, 2020, 318: 124047. doi: 10.1016/j.biortech.2020.124047 [11] MUHAYODIN F, FRITZE A, ROTTER V S. A Review on the Fate of Nutrients and Enhancement of Energy Recovery from Rice Straw through Anaerobic Digestion[J]. Applied Sciences, 2020, 10(6): 2047. doi: 10.3390/app10062047 [12] 张敏, 王振旗, 沈根祥, 等. 基于连续运行条件下的稻秸干法厌氧发酵中试研究[J]. 农业环境科学学报, 2019, 38(12): 2852-2859. doi: 10.11654/jaes.2019-1059 [13] 王振旗, 张敏, 沈根祥, 等. 不同黄贮预处理对水稻秸秆干法厌氧发酵特性的影响[J]. 农业环境科学学报, 2021, 40(4): 894-901. doi: 10.11654/jaes.2020-1100 [14] LIN Y Q, WANG D H, WU S Q, et al. Alkali pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge[J]. Journal of Hazardous Materials, 2009, 170(1): 366-73. doi: 10.1016/j.jhazmat.2009.04.086 [15] 薛惠琴, 杭怡琼, 陈谊. 稻草秸秆中木质素、纤维素测定方法的研讨[J]. 上海畜牧兽医通讯, 2001(2): 15. doi: 10.3969/j.issn.1000-7725.2001.02.005 [16] 中华人民共和国农业农村部. 有机肥料: NY/T 525-2021[S]. 北京: 中国农业出版社, 2021. [17] 中华人民共和国农业农村部. 沼气中甲烷和二氧化碳的测定气相色谱法: NY/T 1700-2009[S]. 北京: 中国农业出版社, 2009. [18] 白晓凤, 李子富, 尹福斌, 等. 鸡粪与玉米秸秆混合“干-湿两相”厌氧发酵启动研究[J]. 中国沼气, 2014, 32(2): 22-25. doi: 10.3969/j.issn.1000-1166.2014.02.006 [19] 杨立, 张婷, 王永泽, 等. 不同秸秆厌氧发酵产沼气效果的比较[J]. 可再生能源, 2008, 26(5): 46-52. doi: 10.3969/j.issn.1671-5292.2008.05.014 [20] MCMAHON K D, STROOT P G, MACKIE R I, et al. Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions II: microbial population dynamics[J]. Water Resource, 2001, 35(7): 1817-1827. [21] SHEN J, ZHENG Q, ZHANG R H, et al. Co-pretreatment of wheat straw by potassium hydroxide and calcium hydroxide: Methane production, economics, and energy potential analysis[J]. Journal of Environmental Management, 2019, 236: 720-726. doi: 10.1016/j.jenvman.2019.01.046 [22] KARIM K, HOFFMANN R, THOMAS KLASSON K, et al. Anaerobic digestion of animal waste: effect of mode of mixing[J]. Water Resource, 2005, 39(15): 3597-606. [23] KAINTHOLA J, KALAMDHAD A S, Goud V V. Optimization of process parameters for accelerated methane yield from anaerobic co-digestion of rice straw and food waste[J]. Renewable Energy, 2020, 149: 1352-1359. doi: 10.1016/j.renene.2019.10.124 [24] ABRAHAM A, MATHEW A K, PARK H, et al. Pretreatment strategies for enhanced biogas production from lignocellulosic biomass[J]. Bioresource Technology, 2020, 301: 122725. doi: 10.1016/j.biortech.2019.122725 [25] BJORNSSON L, MATTIASSON B, HENRYSSON T. Effects of support material on the pattern of volatile fatty acid accumulation at overload in anaerobic digestion of semi-solid waste[J]. Applied Microbiology and Biotechnology, 1997, 47(6): 640-644. doi: 10.1007/s002530050988 [26] PATINVOH R J, KALANTAR MEHRJERDI A, SARVARI HORVATH I, et al. Dry fermentation of manure with straw in continuous plug flow reactor: Reactor development and process stability at different loading rates[J]. Bioresource Technology, 2017, 224: 197-205. doi: 10.1016/j.biortech.2016.11.011 [27] LI Y, HUA D L, XU H P, et al. Acidogenic and methanogenic properties of corn straw silage: Regulation and microbial analysis of two-phase anaerobic digestion[J]. Bioresource Technology, 2020, 307: 123180. doi: 10.1016/j.biortech.2020.123180 [28] SHEN F, LI H D, WU X Y, et al. Effect of organic loading rate on anaerobic co-digestion of rice straw and pig manure with or without biological pretreatment[J]. Bioresource Technology, 2018, 250: 155-162. doi: 10.1016/j.biortech.2017.11.037 [29] WARD A J, HOBBS P J, HOLLIMAN P J, et al. Optimisation of the anaerobic digestion of agricultural resources[J]. Bioresource Technology, 2008, 99(17): 7928-40. doi: 10.1016/j.biortech.2008.02.044 [30] KAPARAJU P, BUENDIA I, ELLEGAARD L, et al. Effects of mixing on methane production during thermophilic anaerobic digestion of manure: lab-scale and pilot-scale studies[J]. Bioresource Technology, 2008, 99(11): 4919-28. doi: 10.1016/j.biortech.2007.09.015 [31] ZHU Q H, LI X G, LI G W, et al. Enhanced bioenergy production in rural areas: Synthetic urine as a pre-treatment for dry anaerobic fermentation of wheat straw[J]. Journal of Cleaner Production, 2020, 260: 121164. doi: 10.1016/j.jclepro.2020.121164 [32] KARIYAMA I D, ZHAI X D, WU B X. Influence of mixing on anaerobic digestion efficiency in stirred tank digesters: A review[J]. Water Resource, 2018, 143: 503-517. [33] MAO L W, ZHANG J X, DAI Y J, et al. Effects of mixing time on methane production from anaerobic co-digestion of food waste and chicken manure: Experimental studies and CFD analysis[J]. Bioresource Technology, 2019, 294: 122177. doi: 10.1016/j.biortech.2019.122177 [34] KIM M, KIM B C, CHOI Y, et al. Minimizing mixing intensity to improve the performance of rice straw anaerobic digestion via enhanced development of microbe-substrate aggregates[J]. Bioresource Technology, 2017, 245: 590-597. doi: 10.1016/j.biortech.2017.09.006