-
自我国2017年发布《长江经济带生态环境保护规划》后,推动长江经济带发展的长江大保护行动就被提上了日程[1]。长江经济带自上海起,贯穿浙江、江苏、安徽、江西、湖北、湖南、重庆、贵州、四川和云南共11个省(直辖市),是我国经济发展的重点区域,在我国经济发展总格局中占据至关重要的地位。据统计,全国约37%重点化工园区位于长江经济带,长江及其主要干支流沿岸和重点湖泊附近(10 km内)聚集了约1.33×104个化工企业[2]。近年来,化工污染企业的聚集呈现自长江下游向中上游转移的趋势,且逐渐由东部传统集聚区(如江苏和浙江等)转移至中西部省份(如湖北和重庆等),给长江经济带土壤和地下水环境污染修复和风险管控带来了巨大挑战[3]。化工行业涉及广泛,基础化学原料、肥料、农药、涂料、合成材料和日用化学品等产品制造往往伴随着高毒、高持久性污染物的产生[4]。化工污染地块中典型污染物主要包括苯系物、多环芳烃和氯代烃类等,且可能出现非水相液体(non-aqueous phase liquid,NAPL)[5-7]。化工生产过程会对企业及周边土壤和地下水环境造成严重污染,因此,为保证化工企业搬迁后土地再利用安全,退役化工污染地块土壤和地下水污染修复已成为了一系列亟待解决的问题。
相较于传统原位修复技术,多相抽提(multi-phase extraction,MPE)技术环境友好,对修复地块扰动小,能够同时去除包气带和含水层中的污染物,尤其对于存在NAPL的污染地块具有良好的修复效果[8-11]。目前,MPE技术在国外已被广泛用于加油站、炼油厂等石油烃污染地块修复中,并得到了良好的效果。GABR等[12]针对Rickenbacker国际机场的航空燃油污染(约85%为饱和低分子芳烃),布设了25排188口预制垂直井安装MPE系统抽提轻质非水相液体(light non-aqueous phase liquid,LNAPL)。该地块为砂质和粉质黏土、粉质砂土、黏质粉土和粉砂地层结构,LNAPL主要分布在粉质砂土层地下水位上。在真空诱导的抽提管内空气流速约为991~1 133 L·min−1条件下,MPE系统运行185 h共去除133 L LNAPL液体和467 kg气相有机污染物。BALDWIN等[13]构建了12口抽提井网络(安置于粉质黏土和砂质黏土层)MPE系统,修复受苯、甲苯、乙苯和二甲苯(BTEX)污染的加油站地下水。该系统以平均850 L·min−1蒸气流速运行2 a,共抽出污染地下水1 400 m3,去除约119 kg石油烃,其中的11口抽提井地下水中BTEX浓度低于0.5 μg·L−1。近年来,MPE技术在国内也逐渐受到关注,已有用于修复土壤和地下水中氯代烃、苯系物和石油烃等相关工程应用案例[14-18]。本研究比较了长江经济带下游地区(主要包括上海、江苏、浙江和安徽)化工污染地块水文地质条件和污染物特征与MPE技术适用条件,结合修复案例分析了该技术在长江经济带下游地区化工污染地块中的应用潜力,以期为MPE技术在该区域的推广实施提供参考。
多相抽提技术在化工污染地块修复中的应用潜力
Application potential of multi-phase extraction technology in remediations of chemical contaminated sites
-
摘要: 多相抽提(MPE)技术是采用真空抽取污染区域土壤气体、地下水和非水相液体(NAPL)到地面进行气液相分离及处理,以去除土壤与地下水中有机污染物的一种环境友好型原位修复技术。本研究从水文地质条件和污染物特征2方面阐述了MPE技术在长江经济带下游地区化工污染地块原位修复中的适用性,梳理了MPE技术原位修复污染地块现状及其联用技术的研究进展,并分析了其在长江经济带下游地区化工污染地块中的应用潜力。结果表明,长江经济带下游地区为填土、粉质砂土、粉土、粉质黏土和黏土等中低渗透性地层结构,该区域化工污染地块主要污染物包括多环芳烃、卤代有机化合物、苯系物和石油烃等,MPE技术在长江经济带下游化工污染地块修复中具有较高的适用性。针对部分污染地块低渗透性地层结构和难挥发有机污染物的复合污染特征,需选择合适的联用技术解决修复后期的拖尾现象,以强化MPE技术修复效果。Abstract: Multi-phase extraction (MPE) technology is an environmental friendly in-situ remediation technology that extracts soil gases, groundwater and non-aqueous liquid phase (NAPL) simultaneously from the ground to the surface, and gas-liquid phase separation and treatment are applied subsequently. The applicability of MPE technology in chemical contaminated sites in the downstream region of Yangtze River Economic Zone was analyzed from the aspects of geological conditions and pollutants characteristics. The current states of in-situ remediation by MPE technology and the research progress of its combined technology were summarized in this study. The results indicated that the geological structures were from medium to low permeability in chemical contaminated sites in the downstream region of Yangtze River Economic Zone, including fill, silty sand, silt, silty clay and clay. The main pollutants were polycyclic aromatic hydrocarbon (PAHs), halogenated organic compounds, benzenes and petroleum hydrocarbons. MPE technology had great potential for the remediation of chemically contaminated sites in such area from the data. However, for the sites with low permeability geological structure and combined pollutions with involatile organic contaminants, it was necessary to choose appropriate combined technology to solve the tailing phenomenon in the later stage of MPE process, enhancing the removal efficiency of target contaminants.
-
表 1 长江经济带下游不同地区的地层结构
Table 1. Geological structures of different areas in the downstream region of Yangtze River Economic Zone
地区 地层结构 参考文献 安徽省铜陵市郊区 人工填土(厚1~5 m),粉质黏土(厚1~3 m),黏土、粉质黏土(厚3.2~8.5 m),淤泥质黏土、粉质黏土(厚3.8~21.3 m);局部分布粉质黏土和粉砂互层(厚16~18 m),粉砂夹粉土(厚1~4.5 m) [33] 江苏省南京市秦淮区 填土(厚0.3~5.2 m),粉土(厚2.5~8.6 m),粉细砂(厚1.3~11.8m),粉土夹粉砂(厚0.7~6.2 m),粉质黏土(厚2.5~8.6 m),泥岩(厚4.7~揭露最大厚度10.2 m) [34] 江苏省镇江市姚桥镇 素填土(厚2.5 m),粉砂质黏土(厚0.8 m),粉砂(厚2.7 m),黏土与粉砂互层(厚6.8 m),粉砂(厚1.3 m),黏土夹粉砂(厚2.0 m),亚砂土-粉砂(厚7.9 m,上部为黏土与粉砂互层,厚3.9m;下部为粉砂,厚4.0 m) [35] 江苏省常州市横山桥镇 耕植土(埋深0.8~1.9 m),黏土、粉砂质黏土、细砂(埋深7.5~10.5 m),黏土(埋深13.7~15.4 m),粉砂质黏土、黏土(埋深46.5~48.5 m) [36] 江苏省苏州市吴江
经济技术开发区填土(厚2.4~3.9 m),黏土(厚2.4~3.6 m),粉质黏土(厚1.5~2.6 m),粉土夹粉质黏土(厚2.1~5.2 m),粉土(厚12.2~15.5 m),粉质黏土(厚5.6~7.2 m) [37] 上海市宝山区 填土(埋深0~0.5 m),黏土(埋深0.5~2 m),淤泥质黏土(埋深7~12 m),黏土(埋深15~32 m);部分存在粉土/粉砂(埋深2~3 m和20~35 m),淤泥质粉质黏土(埋深3~7 m),粉细砂(埋深35~40 m) [38] 浙江省杭州市滨江区 杂填土(埋深0~0.7 m),砂质粉土(埋深0.7~5.5 m),粉砂夹砂质粉土(埋深5.5~16.9 m),淤泥质/粉质黏土(埋深16.9~32.1 m),淤泥质黏土(埋深32.1~36.3 m),黏土(埋深36.3~41.2 m) [39] 表 2 MPE技术与常用修复技术适用污染物类型对比
Table 2. Comparison of applicable contaminant species between MPE technology and other frequently-used remediation technologies
修复技术名称 非卤化VOCs1) 卤化VOCs 非卤化SVOCs2) 卤化SVOCs 石油烃 POPs3) 重金属 固化/稳定化 不适用 不适用 一般 一般 不适用 适用 适用 原位化学氧化 一般 一般 适用 适用 适用 适用 适用 水泥窑协同 适用 适用 适用 适用 适用 适用 不适用 土壤气相抽提 适用 适用 不适用 不适用 适用 不适用 不适用 热处理 适用 适用 适用 适用 适用 适用 不适用 植物修复 不适用 不适用 一般 一般 一般 一般 适用 可渗透反应墙 适用 适用 适用 适用 一般 适用 一般 多相抽提 适用 适用 适用 适用 适用 适用 不适用 注:1)挥发性有机污染物;2)半挥发性有机污染物;3)持久性有机污染物。 表 3 MPE技术与常用修复技术特征对比
Table 3. Comparison of remediation technology characteristics between MPE technology and other frequently-used remediation technologies
修复技术名称 技术
成熟度运行维护成本 资金投入 维护需求 修复时间 适用土壤渗透性 污染物去除率 二次污染
风险固化/稳定化 高 一般 较高 较低 <1 a 中等 >90% 中 原位化学氧化 高 高 一般 一般 <1 a 中等 >90% 高 水泥窑协同 一般 一般 较低 较低 <0.5 a — >90% 高 土壤气相抽提 高 高 一般 较低 1~3 a 较低 70%~90% 低 热处理 高 高 较高 较高 <1 a 一般 >90% 高 植物修复 高 低 较低 较高 >3 a 较低 >90% 低 可渗透反应墙 高 一般 较高 一般 >10 a — 70%~90% 低 多相抽提 高 高 较高 一般 3~10 a 较低 70%~90% 低 表 4 MPE技术在长江经济带下游地区化工污染地块中的应用案例相关参数
Table 4. Relevant parameters of MPE case studies for chemically contaminated sites in the in the downstream region of Yangtze River Economic Zone
原地块
用途地块
地址主要
污染物污染深
度/m污染物初始质量
浓度/(mg·L−1)主要
地层
结构土层渗透
系数/(cm·s−1)地下水
埋深/m抽提井
尺寸/m布井间
距/m抽提井
影响
半径/m井头
真空
度/MPa单井抽提量/
(m³·h−1)修复
工艺达标
周期/
d修复目标值/
(mg·L−1)参考
文献工业
仓库上海 氯代烃、二甲苯 2.00~
6.00二氯乙烯:47
四氯乙烯:120
二甲苯:0.11素填土、粉质黏土 — 0.90~ 1.00 井深4.00
井口直径0.08
外管径0.05
抽提管长3.50
直径0.022.00~
3.001.50 −0.03、
−0.06水:0.30/0.50
气:10.00/25.00上层土壤异位氧化(H2O2)+下层土壤MPE 20 二氯乙烯:0.02
四氯乙烯:0.04
二甲苯:0.07[14] 漆厂、
树脂厂上海 苯系物、石油烃 0.50~
6.00— 杂填土、粉质砂土、粉质黏土 粉质砂土层:3.95×10−5
粉质黏土层:3.33×10−60.55~
1.10井深6.00
抽提管外径0.0252.50 1.50 −0.02~
−0.032.00 TPE+ ISCO
(PS)60 苯:0.03
甲苯:35.60
乙苯:0.15
二甲苯:0.80
联(二)苯:0.06
二苯醚:7.78
TPH:4.29[15] 电子
机械厂上海 总石油烃、多环芳烃及苯系物 0.50~
4.00总石油烃:130
苯并(a)芘:0.02
苯并(a)蒽:0.25
乙苯:0.46
1,2,4-三甲苯:0.82填土、粉质黏土、砂质粉土 粉质黏土:1.74×10−5
砂质粉土:1.74×10−40.80~
1.20井深4.00
外径0.04
抽提管长2.50
直径0.0253.00 1.50 −0.02 水:0.30
气:14.00MPE+ ISCO (PS) 45 总石油烃:2.11
苯并(a)芘:0.005
苯并(a)蒽:0.002
乙苯:0.04
1,2,4-三甲苯:0.05[16] 化工
企业上海 氯苯、二氯苯 6.00 氯苯:62.10
1,2-二氯苯:23.90
1,4-二氯苯:15杂填土、浜填土、粉质黏土、淤泥质黏土、黏土层 杂填土:5.78×10−4
粉质黏土:4.63×10−5
淤泥质粉质黏土:4.17×10−5
淤泥质黏土:2.31×10−5
黏土层:1.16×10−60.66~
2.03井深6.00
井口直径 0.08
外管径0.05
抽提管长5.00
直径0.021.50 0.75 −0.05 水: 0.4
气:15.00MPE+ ISCO
(PS)25 氯苯:0.83
1,2-二氯苯:3.75
1,4-二氯苯:0.71[17] 制漆厂 江苏 苯 5.50 苯:3.98 ~ 4.66 素填土、
粉质黏土— 0.85~
4.62井深6.00
内径0.057— 2.00~ 3.00 −0.03 水:0.10~0.15
气:1.00~1.50MPE+ ISCO (H2O2) 60 苯:9.85 [18] -
[1] 环境保护部, 国家发展和改革委员会, 水利部. 长江经济带生态环境保护规划[R]. 北京: 环境保护部, 2017: 7-17. [2] 韩丽明. 长江经济带11省市化工企业园区现状调查及对策分析[J]. 环境保护与循环经济, 2020, 40(2): 87-90. doi: 10.3969/j.issn.1674-1021.2020.02.022 [3] 胡锐, 李娜, 廖琪, 等. 长江经济带沿江化工企业问题与对策分析[J]. 环境与可持续发展, 2019, 44(5): 43-47. [4] LIU W, YAO H Y, LIU G B, et al. Suspect screening and risk assessment of pollutants in the wastewater from a chemical industry park in China[J]. Environmental Pollution, 2020, 263: 114493. doi: 10.1016/j.envpol.2020.114493 [5] MO Z, SHAO M, LU S, et al. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China[J]. Science of the Total Environment, 2015, 533: 422-431. doi: 10.1016/j.scitotenv.2015.06.089 [6] JIA H, GAO S, DUAN Y, et al. Investigation of health risk assessment and odor pollution of volatile organic compounds from industrial activities in the Yangtze River Delta region, China[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111474. doi: 10.1016/j.ecoenv.2020.111474 [7] 宋易南, 侯德义, 赵勇胜, 等. 京津冀化工场地地下水污染修复治理对策研究[J]. 环境科学研究, 2020, 33(6): 1345-1356. [8] 张祥. 有机污染场地原位多相抽提修复研究进展[J]. 应用化工, 2020, 49(1): 207-211. [9] CHESNAUX R. Analytical closed-form solutions for assessing pumping cycles, times, and costs required for NAPL remediation[J]. Environmental Geology, 2008, 55(7): 1381-1388. doi: 10.1007/s00254-007-1088-9 [10] ITRC (Interstate Technology & Regulatory Council). Technical/ regulatory guidance: Evaluating LNAPL remedial technologies for achieving project goals[R]. Washington DC: Interstate Technology & Regulatory Council, LNAPLs Team, 2009: 8-18. [11] BAKER R S, BIERSCHENK J. Vacuum-enhanced recovery of water and NAPL: Concept and field test[J]. Journal of Soil Contamination, 1995, 4(1): 57-76. doi: 10.1080/15320389509383481 [12] GABR M A, SHARMIN N, QUARANTA J D. Multiphase extraction of light non-aqueous phase liquid (LNAPL) using prefabricated vertical wells[J]. Geotechnical and Geological Engineering, 2013, 31(1): 103-118. doi: 10.1007/s10706-012-9567-5 [13] BALDWIN B R, NAKATSU C H, NEBE J, et al. Enumeration of aromatic oxygenase genes to evaluate biodegradation during multi-phase extraction at a gasoline-contaminated site[J]. Journal of Hazardous Materials, 2009, 163(2/3): 524-530. [14] 张云达, 顾春杰, 何健, 等. 多相抽提技术在有机复合污染场地治理中的应用[J]. 上海建设科技, 2018(1): 71-74. doi: 10.3969/j.issn.1005-6637.2018.01.021 [15] 邱月峰. 上海某工业场地地下水有机物复合污染修复技术应用[J]. 净水技术, 2018, 37(S1): 235-238. [16] 张晶, 张峰, 马烈. 多相抽提和原位化学氧化联合修复技术应用: 某有机复合污染场地地下水修复工程案例[J]. 环境保护科学, 2016, 42(3): 154-158. [17] 王锦淮, 顾春杰. 多相抽提+原位化学氧化联合技术在有机污染场地的工程应用[J]. 上海化工, 2017, 42(12): 20-24. doi: 10.3969/j.issn.1004-017X.2017.12.010 [18] 闵浩. 多相抽提+原位化学氧化工艺去除地下水中苯的应用研究[J]. 工业安全与环保, 2020, 46(6): 89-92. doi: 10.3969/j.issn.1001-425X.2020.06.021 [19] U. S. Army Corps of Engineers. Engineering and Design: Multi-Phase Extraction: EM 1110-1-4010[M]. Washington DC: Army Corps of Engineers, 1999. [20] U. S. Environmental Protection Agency. Presumptive remedy: Supplemental bulletin multi-phase extraction (MPE) technology for VOCs in soil and groundwater: EPA 540-F-97-004[R]. Washington DC: Office of Solid Waste and Emergency Response, 1997: 2-6. [21] MISHRA M, SINGH S K, KUMAR A. Microbe Mediated Remediation of Environmental Contaminants: Chapter 5-Environmental Factors Affecting the Bioremediation Potential of Microbes[M]. Cambridge UK.: Woodhead Publishing, 2021: 47-58. [22] US Environmental Protection Agency. Engineering Issue: In situ and ex situ biodegradation technologies for remediation of contaminated sites: EPA 625/R-06/015[R]. Cincinnati OH: Office of Research and Development National Risk Management Research Laboratory, 2006: 11-12. [23] SIMPANEN S, YU D, MÄKELÄ R, et al. Soil vapor extraction of wet gasoline-contaminated soil made possible by electroosmotic dewatering-lab simulations applied at a field site[J]. Journal of Soils and Sediments, 2018, 18(11): 3303-3309. doi: 10.1007/s11368-017-1717-1 [24] 王静, 张峰, 刘路. 多相抽提技术的发展现状与展望[J]. 广州化工, 2019, 47(8): 14-18. doi: 10.3969/j.issn.1001-9677.2019.08.009 [25] 中华人民共和国住房和城乡建设部. 水利发电工程地质勘查规范: GB 50287-2016[S]. 北京: 中国计划出版社, 2016: 122. [26] U. S. Army Corps of Engineers. Engineering and Design: Soil Vapor Extraction and Bioventing: EM 1110-1-4001[M]. Washington DC: Army Corps of Engineer, 2002. [27] The Government of Canada. Fact sheet: Multi-phase extraction systems for non-aqueous phase liquids (NAPL)[EB/OL]. [2021-04-23]. https://gost.tpsgc-pwgsc.gc.ca/tfs.aspx?ID=36&lang=eng. [28] 王靖泰, 郭蓄民, 许世远, 等. 全新世长江三角洲的发育[J]. 地质学报, 1981, 55(1): 67-81. [29] 赵希涛, 胡道功, 吴中海, 等. 长江三角洲地区晚新生代地质与环境研究进展述评[J]. 地质力学学报, 2017, 23(1): 1-64. doi: 10.3969/j.issn.1006-6616.2017.01.001 [30] 林钟扬, 金翔龙, 管敏琳, 等. 长江三角洲南翼第四纪沉积层序及其与古环境演变的耦合[J]. 科学技术与工程, 2019, 19(13): 15-24. doi: 10.3969/j.issn.1671-1815.2019.13.003 [31] 宗开红, 宗雯, 康丛轩, 等. 长江三角洲北翼YBK1孔第四纪地层年代学研究[J]. 地质力学学报, 2018, 24(1): 116-127. [32] 朱辉, 叶淑君, 吴吉春. 中国典型有机污染场地土层岩性和污染物特征分析[J]. 地学前缘, 2021, 28(5): 26-34. [33] 张鑫, 崔可锐, 査甫生, 等. 长江安徽段沿岸工程地质分区研究[J]. 工程与建设, 2015(2): 145-148. doi: 10.3969/j.issn.1673-5781.2015.02.001 [34] 崔业生. 南京新街口苏宁电器广场新建工程勘察设计探讨[J]. 建材发展导向, 2011, 9(5): 433-434. [35] 苗巧银, 朱志国, 陈火根, 等. 镇江地区长江南北两岸第四纪地层结构划分与沉积特征对比[J]. 华东地质, 2017, 38(3): 175-183. [36] 张鹏, 张媛媛, 许汉刚, 等. 苏锡常断裂的第四纪活动性[J]. 地震地质, 2019, 41(5): 1172-1184. doi: 10.3969/j.issn.0253-4967.2019.05.007 [37] 高伟. 苏州某场地工程地基地质条件及基础评价分析[J]. 地下水, 2018, 40(2): 113-115. doi: 10.3969/j.issn.1004-1184.2018.02.040 [38] 张文龙, 史玉金. 上海市工程地质分区问题[J]. 上海国土资源, 2013(1): 5-9. [39] 卜令方, 金忠良, 汪明元. 杭州市平原地区的工程地质分区[J]. 科技通报, 2018(4): 62-66. [40] 王艳伟, 李书鹏, 康绍果, 等. 中国工业污染场地修复发展状况分析[J]. 环境工程, 2017, 35(10): 175-178. [41] 张娟, 邢轶兰, 李书鹏, 等. 土壤与地下水修复行业2017年发展综述[J]. 中国环保产业, 2018(11): 5-24. doi: 10.3969/j.issn.1006-5377.2018.11.001 [42] 北极星环境修复网. 土壤与地下水修复行业发展报告(2018)[R/OL]. (2019-06-15)[2021-04-23]. http://huanbao.bjx.com.cn/news/20190615/986390.shtml. [43] 环境保护部. 工业企业场地环境调查评估与修复工作指南(试行)[Z]. 北京: 环境保护部, 2014: 95-97. [44] 环境保护部. 污染场地修复技术应用指南(征求意见稿)[Z]. 北京: 环境保护部, 2014: 19-22. [45] 中国环境保护产业协会. 污染场地修复技术筛选指南: CAEPI 1-2015[Z]. 北京: 中国环境保护产业协会, 2015: 20-21. [46] KHAN F I, HUSAIN T, HEJAZI R. An overview and analysis of site remediation technologies[J]. Journal of Environmental Management, 2004, 71(2): 95-122. [47] CALIMAN F A, ROBU B M, SMARANDA C, et al. Soil and groundwater cleanup: Benefits and limits of emerging technologies[J]. Clean Technologies and Environmental Policy, 2011, 13(2): 241-268. doi: 10.1007/s10098-010-0319-z [48] LABIANCA C, DE GISI S, PICARDI F, et al. Remediation of a petroleum hydrocarbon-contaminated site by soil vapor extraction: A full-scale case study[J]. Applied Sciences, 2020, 10(12): 4261. doi: 10.3390/app10124261 [49] 陈梦舫, 钱林波, 晏井春. 地下水可渗透反应墙: 修复技术原理、设计与应用[J]. 北京: 科学出版社, 2017: 23-38. [50] ZHAO C, DONG Y, FENG Y, et al. Thermal desorption for remediation of contaminated soil: A review[J]. Chemosphere, 2019, 221: 841-855. doi: 10.1016/j.chemosphere.2019.01.079 [51] 戴昕, 刘军, 赵慧慧, 等. 受LNAPL污染地下水的AS/MPE联用修复系统及方法: 202010926050.8[P]. 2020-12-29. [52] 申屠雷吉, 刘爱森, 叶渊, 等. 一种用于污染地块治理的气动压裂强化多相抽提系统: 202010971111.2[P]. 2020-12-11. [53] 余湛, 王森, 郑阳, 等. 一种电动强化多相抽提系统: 201922130467.9[P]. 2020-10-27. [54] 谢宇, 李长全, 凌云. 一种低渗透多相抽提布井系统及其抽提方法: 202010266083.4[P]. 2020-08-28. [55] 王国杰. 基于绿色表面活性剂联合多相抽提技术去除土壤中有机污染物的性能研究[D]. 济南: 山东大学, 2020. [56] 尹炳奎. 热强化多相抽提在氯代烃污染场地的中试研究[J]. 广东化工, 2020, 47(9): 144-145. doi: 10.3969/j.issn.1007-1865.2020.09.066 [57] 王儒, 郑伟, 梅浩, 等. 有机污染土壤原位淋洗及多项与多相抽提连用修复装置: 201821272505.3[P]. 2019-07-16.