-
近年来,基于亚硝化的新型脱氮技术,如亚硝化-厌氧氨氧化(SHARON-ANAMMOXA)、全程自养脱氮(CANON),较传统的硝化反硝化技术能够在脱氮过程中节省曝气能耗和有机碳源[1],引起了学术界的广泛关注。这些新型脱氮技术的关键是亚硝化的实现。目前。常见的实现亚硝化的策略有低DO[2-3]、高温[4]、高FA浓度[5]、高FNA[6]、高pH[7]及合适的泥龄[4]。然而,亚硝化很难实现长期稳定运行,尤其是在低浓度废水中。在低浓度废水中,氨氮浓度低,难以采用高FA及FNA抑制NOB,实现亚硝酸盐的积累。且在主流废水中,有机物、pH、温度等因素都会对亚硝化造成不利影响。
生物膜具有抗冲击负荷、污泥产量低、运行稳定、无污泥膨胀等优点。生物膜系统已被证实可以在低浓度废水中实现亚硝化的稳定运行[8]。且生物膜系统泥龄长,适合硝化细菌生长,同时底物在生物膜中的浓度梯度也可抑制了NOB的活性。在亚硝化生物膜系统中,微生物会在填料表面附着生长,生物膜的厚度使得生物膜不同深度有不同的环境,微生物分布也不同。因AOB对氧的亲和力高,所以AOB一般分布于生物膜外表面,NOB位于较内层[9]。采用限氧策略(DO/
$ {\rm{NH}}_{\rm{4}}^{\rm{ + }}$ )能够在生物膜系统中实现亚硝化。通过控制DO/$ {\rm{NH}}_{\rm{4}}^{\rm{ + }}$ 的值,使得生物膜表面形成一层耗氧屏障,抑制亚硝酸盐氧化,达到实现亚硝化的目的[10-11]。然而,以往的研究大多基于活性污泥法研究亚硝化的实现及稳定运行,对在低氨氮浓度下亚硝化生物膜的挂膜过程、微生物的种群空间结构及其稳定运行研究较少。本研究中,接种实验室培养好的亚硝化絮体污泥,在完全混合式反应器中加入填料,用以处理低浓度废水。维持反应器内DO恒定,通过改变反应器的HRT控制反应器内剩余氨氮的浓度,研究了DO/
$ {\rm{NH}}_{\rm{4}}^{\rm{ + }}$ 策略对系统亚硝化的影响,期间,对反应器性能及填料挂膜过程进行了系统地分析,并对生物膜中细菌种群结构进行了分析,以期为进一步推进亚硝化生物膜技术的工程化应用提供参考。
低基质浓度下生物膜亚硝化工艺的快速启动及其运行效能
Fast start-up of nitrosation biofilm process and its performance with low strength sewage
-
摘要: 采用多孔凝胶填料,在低氨氮浓度下接种亚硝化絮体污泥进行填料挂膜,研究了反应器中填料的挂膜过程和不同DO/
${{\rm{NH}}_{\rm{4}}^{\rm{ + }}}$ 下亚硝化效果,采用MiSeq高通量测序技术分析了反应器中微生物种群结构。结果表明:在初始的1~3 d,有大量悬浮絮体污泥进入填料内部,反应器中基本无絮体污泥;随后填料内部的微生物不断由内向外生长,填料表观颜色不断加深,30 d时填料挂膜成功;DO/$ {{\rm{NH}}_{\rm{4}}^{\rm{ + }}}$ 比值为0.09~0.2,氨氮容积负荷为1 kg·(m3·d)−1时,亚硝化效果最好,亚硝积累率最高达86.13%。随着DO/$ {{\rm{NH}}_{\rm{4}}^{\rm{ + }}}$ 的比值增加,亚硝积累率有所下降。批次实验结果表明,通过控制DO/$ {{\rm{NH}}_{\rm{4}}^{\rm{ + }}}$ 的值,能够使生物膜表面形成一层耗氧屏障,则生物膜内部所能利用的氧有限,以此达到抑制NOB的目的。微生物分析结果表明:生物膜中AOB/NOB值为3,AOB在硝化细菌中占主导地位,生物膜中厌氧氨氧化菌得到富集,在34 d时丰度增加至25.13%,符合反应器总氮去除率上升的特征。-
关键词:
- 生物膜 /
- 亚硝化 /
- 厌氧氨氧化 /
- DO/$ {{\rm{NH}}_{\rm{4}}^{\rm{ + }}}$
Abstract: The growth of biofilm on carriers and the stability of nitrification in the reactor were studied by inoculation of nitrifying floc sludge at low ammonia concentration with porous gel carriers, and the microbial population structure in the reactor was analyzed with high throughput sequencing technology. The results showed that large amounts of suspended flocs entered the carriers during the initial 1~3 days, and almost no flocs appeared in the reactor. Then the microorganisms inside the carriers grew continuously from the inside to the outside, and the apparent color of the carriers deepened continuously. On the 30th day, the mature biofilm was successfully formed, and its surface was brick red. When the ratio of DO to$ {\rm{NH}}_{\rm{4}}^{\rm{ + }}$ ranged from 0.09~0.2 and the volume load of ammonia nitrogen was 1 kg·(m3·d)−1, nitrite accumulation rate reached to 86%. With the increase of the ratio of DO to$ {\rm{NH}}_{\rm{4}}^{\rm{ + }}$ , a slight decrease of nitrite accumulation rate occurred. The batch tests showed that AOB could use dissolved oxygen to form a barrier to consume oxygen on the surface of the biofilm by controlling the value of DO/$ {\rm{NH}}_{\rm{4}}^{\rm{ + }}$ , and the dissolved oxygen in the internal biofilm was limited, and the purpose of inhibiting NOB was achieved. The results of microbial analysis showed that the ratio of AOB to NOB in the biofilm was 3, and AOB played a dominant role in Nitrifying bacteria. In addition, the ANAMMOX bacteria were enriched in the biofilm, and the abundance increased to 25.13% after 34 d, which was consistent with the increase of total nitrogen removal rate in the reactor.-
Key words:
- biofilm /
- nitrosation /
- anammox /
- DO/$ {\rm{NH}}_{\rm{4}}^{\rm{ + }}$
-
表 1 反应器运行工况
Table 1. Operating conditions in the reactor
运行阶段 进水氨氮质
量浓度/
(mg·L−1)HRT/h 氨氮容
积负荷/
(kg·(m3·d)−1)DO/
(mg·L−1)pH Ⅰ(1~5 d) 50 4 0.5 3~4 7.8~8.2 Ⅱ(6~35 d) 50 2 1 3~4 7.8~8.2 Ⅲ(36~42 d) 50 3 0.75 3~4 7.8~8.2 Ⅳ(43~47 d) 50 4 0.5 3~4 7.8~8.2 Ⅴ(48~99 d) 50 2 1 3~4 7.8~8.2 表 2 主要功能细菌丰度
Table 2. Abundance of Functional bacteria
时间/d 样品 细菌丰度/% Nitrosomonas Nitrospira Candidatus_Kuenenia 0 种泥 1.55 0.24 4.05 34 生物膜 0.45 0.15 25.13 -
[1] TURK O, MAVINIC D S. Benefits of using selective inhibition to remove nitrogen from highly nitrogenous wastes[J]. Environmental Technology Letters, 1987, 8: 419-426. doi: 10.1080/09593338709384500 [2] BLACKBURNE R, YUAN Z, KELLER J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor[J]. Biodegradation, 2008, 19(2): 303-312. doi: 10.1007/s10532-007-9136-4 [3] VAN HULLE S W H, VANDEWEYER H J P, MEESSCHAERT B D, et al. Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams[J]. Chemical Engineering Journal, 2010, 162(1): 1-20. [4] HELLINGA C, SCHELLEN A A J C, MULDER J W, et al. The sharon process: An innovative method for nitrogen removal from ammonium-rich waste water[J]. Water Science and Technology, 1998, 37(9): 135-142. [5] ANTHONISEN A C, LOEHR R C, PRAKASAM T B S, et al. Inhibition of nitrification by ammonia and nitrous-acid[J]. Journal -Water Pollution Control Federation, 1976, 48(5): 835-852. [6] ZHOU Y, OEHMEN A, LIM M, et al. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants[J]. Water Research, 2011, 45(15): 4672-4682. doi: 10.1016/j.watres.2011.06.025 [7] VILLAVERDE S, GARCÍA-ENCINA P A, FDZ-POLANCO F. Influence of pH over nitrifying biofilm activity in submerged biofilters[J]. Water Research (Oxford), 1997, 31(5): 1180-1186. doi: 10.1016/S0043-1354(96)00376-4 [8] LAURENI M, FALÅS P, ROBIN O, et al. Mainstream partial nitritation and anammox: Long-term process stability and effluent quality at low temperatures[J]. Water Research, 2016, 101: 628-639. doi: 10.1016/j.watres.2016.05.005 [9] BROCKMANN D, MORGENROTH E. Evaluating operating conditions for outcompeting nitrite oxidizers and maintaining partial nitrification in biofilm systems using biofilm modeling and monte carlo filtering[J]. Water Research, 2010, 44(6): 1995-2009. doi: 10.1016/j.watres.2009.12.010 [10] HARREMOËS P. Criteria for nitrification in fixed film reactors[J]. Water Science and Technology, 1982, 14(1/2): 167-187. [11] LAURENI M, WEISSBRODT D G, VILLEZ K, et al. Biomass segregation between biofilm and flocs improves the control of nitrite-oxidizing bacteria in mainstream partial nitritation and anammox processes[J]. Water Research, 2019, 154: 104-116. doi: 10.1016/j.watres.2018.12.051 [12] GUERRERO J, GUISASOLA A, BAEZA J A. The nature of the carbon source rules the competition between PAO and denitrifiers in systems for simultaneous biological nitrogen and phosphorus removal[J]. Water Research, 2011, 45(16): 4793-4802. doi: 10.1016/j.watres.2011.06.019 [13] 王建芳, 齐泽坤, 钱飞跃, 等. HRT对CSTR亚硝化颗粒污泥性能影响[J]. 环境科学, 2020, 41(4): 1794-1800. [14] TIJHUIS L, HUISMAN J L, HEKKELMAN H D, et al. Formation of nitrifying biofilms on small suspended particles in airlift reactors[J]. Biotechnology and Bioengineering, 1995, 47(5): 585-595. doi: 10.1002/bit.260470511 [15] O'TOOLE G G, KAPLAN H B, KOLTER R. Biofilm formation as microbial development[J]. Annual Review of Microbiology, 2000, 54(1): 49-79. doi: 10.1146/annurev.micro.54.1.49 [16] 史晓林, 石先阳. MBBR不同填料挂膜启动及短程硝化特性研究[J]. 水处理技术, 2020, 46(6): 95-99. [17] 刘小锦, 刘琪, 刘广青, 等. 升流式生物膜反应器中CANON工艺处理中低浓度氨氮废水的快速启动[J]. 环境工程学报, 2020, 14(6): 1545-1553. doi: 10.12030/j.cjee.201908062 [18] CUI B, YANG Q, LIU X, et al. The effect of dissolved oxygen concentration on long-term stability of partial nitrification process[J]. Journal of Environmental Sciences, 2020, 90: 343-351. doi: 10.1016/j.jes.2019.12.012 [19] 赵青, 卞伟, 李军, 等. DO/ $ {\rm{NH}}_{\rm{4}}^{\rm{ + }}$ -N调控实现MBBR工艺生活污水短程硝化[J]. 中国环境科学, 2017, 37(12): 4511-4517. doi: 10.3969/j.issn.1000-6923.2017.12.013[20] BARTROLI A, PEREZ J, CARRERA J. Applying ratio control in a continuous granular reactor to achieve full nitritation under stable operating conditions[J]. Environmental Science & Technology, 2010, 44(23): 8930-8935. [21] BIAN W, ZHANG S, ZHANG Y, et al. Achieving nitritation in a continuous moving bed biofilm reactor at different temperatures through ratio control[J]. Bioresource Technology, 2017, 226: 73-79. doi: 10.1016/j.biortech.2016.12.014 [22] VAZQUEZ-PADN J R, FIGUEROA M, CAMPOS J L, et al. Nitrifying granular systems: A suitable technology to obtain stable partial nitrification at room temperature[J]. Separation and Purification Technology, 2010, 74(2): 178-186. doi: 10.1016/j.seppur.2010.06.003 [23] 程军, 张亮, 张树军, 等. 氨氮负荷波动对城市污水短程硝化-厌氧氨氧化工艺硝态氮的影响[J]. 中国环境科学, 2017, 37(2): 520-525. doi: 10.3969/j.issn.1000-6923.2017.02.015 [24] 付昆明, 张杰, 曹相生, 等. 好氧条件下CANON工艺的启动研究[J]. 环境科学, 2009, 30(6): 1689-1694. doi: 10.3321/j.issn:0250-3301.2009.06.022 [25] PREZ J, LAURENI M, VAN LOOSDRECHT M C M, et al. The role of the external mass transfer resistance in nitrite oxidizing bacteria repression in biofilm-based partial nitritation/anammox reactors[J]. Water Research, 2020, 186: 116348. doi: 10.1016/j.watres.2020.116348 [26] BIAN W, LI J, HOU A, et al. Rapidly startup of partial nitrification in sequencing batch reactor and microbiological analysis[J]. Desalination and Water Treatment, 2016, 57(44): 21062-21070. [27] ZHANG X, LI D, LIANG Y, et al. Performance and microbial community of completely autotrophic nitrogen removal over nitrite (CANON) process in two membrane bioreactors (MBR) fed with different substrate levels[J]. Bioresource Technology, 2014, 152: 185-191. doi: 10.1016/j.biortech.2013.10.110 [28] 王秀杰, 王维奇, 李军, 等. 异养硝化菌Acinetobacter sp. 的分离鉴定及其脱氮特性[J]. 中国环境科学, 2017, 37(11): 4241-4250. doi: 10.3969/j.issn.1000-6923.2017.11.029 [29] 陈均利, 彭英湘, 刘锋, 等. 异养硝化-好氧反硝化菌脱氮特性研究进展[J]. 环境科学与技术, 2020, 43(5): 41-48. [30] YANG L, YANG L, REN Y, et al. Isolation and characterization of three heterotrophic nitrifying-aerobic denitrifying bacteria from a sequencing batch reactor[J]. Annals of Microbiology, 2016, 66(2): 737-747. doi: 10.1007/s13213-015-1161-7 [31] ZHANG L, ZHANG S, PENG Y, et al. Nitrogen removal performance and microbial distribution in pilot- and full-scale integrated fixed-biofilm activated sludge reactors based on nitritation-anammox process[J]. Bioresource Technology, 2015, 196: 448-453. doi: 10.1016/j.biortech.2015.07.090 [32] ZHANG X, CHEN X, ZHANG C, et al. Effect of filling fraction on the performance of sponge-based moving bed biofilm reactor[J]. Bioresource Technology, 2016, 219: 762-767. doi: 10.1016/j.biortech.2016.08.031 [33] GU W, WANG L, LIU Y, et al. Anammox bacteria enrichment and denitrification in moving bed biofilm reactors packed with different buoyant carriers: Performances and mechanisms[J]. Science of the Total Environment, 2020, 719: 137277. doi: 10.1016/j.scitotenv.2020.137277 [34] AHMAD M, LIU S, MAHMOOD N, et al. Synergic adsorption-biodegradation by an advanced carrier for enhanced removal of high-strength nitrogen and refractory organics[J]. ACS Applied Materials & Interfaces, 2017, 9(15): 13188-13200.