-
在乡村地区,对生活废水进行分户处理有利于降低建设与运维的成本。在这方面,日本的分户净化槽技术具有代表性[1]。但在很多发展中国家或地区,采用分户处理的办法对全部生活废水进行处理的成本仍然太高,远远超过了当地居民以及地方财政的承受能力。在这种情况下,采用分户的方式先对厕所废水进行处理是一个不错的选项,对迅速改善落后地区(尤其是乡村地区)的生活卫生条件有积极的意义[2]。
在先前的研究中,我们发现针对分户的厕所废水处理,可以在几乎不需要控制的自然状态下启动并获得稳定的部分亚硝化反应。在注满清水并且曝气的反应器中直接接入预处理后的厕所废水,经过约21 d后,反应器就可以获得稳定的部分亚硝化性能[3]。这种特性为利用更高效的部分亚硝化-厌氧氨氧化技术处理分户厕所废水奠定了基础。尽管如此,我们仍然希望能够进一步缩短反应器的启动时间[4]。
无论厌氧还是好氧反应器,接种具有特定功能的污泥是一种常见的加快反应器启动的策略。然而,获取大量的具有亚硝化功能的污泥并不容易。即使接种了活性亚硝化污泥,对于生物膜反应器而言,AOB定殖到生物填料表面也需要一段时长,在此期间AOB同样容易流失[5]。相比于活性亚硝化污泥,厌氧污泥比较容易获得,可以就近从化粪池内取用。本文拟通过在向厕所废水预处理单元内添加厌氧污泥来实现亚硝化反应的快速启动。可行性推论包括2个方面:一方面通过厌氧污泥的接种加速厕所废水中COD值的降低过程,使得进入亚硝化单元废水的COD值降低。而有机物(以COD计)又是异养菌的食物,从而降低亚硝化单元内异养菌对亚硝化细菌的竞争性抑制[6],实现加速反应器启动的目的;另一方面,厌氧污泥的接种使得厕所废水中大分子有机质迅速地分解成小分子有机质[7]。相比小分子有机物,难降解的大分子因更易诱发异养菌产生EPS[5],从而对填料生物膜上的AOB产生遮蔽作用,导致AOB难以获得基质和溶解氧,进而限制了其生长速度。而厌氧污泥的接种迅速降低了大分子有机质的含量,加速了亚硝化反应的启动。因此,本研究的目的是,通过实验检验此策略对加快亚硝化反应启动的影响,并试图阐述可能的机理。
基于厌氧污泥接种的预处理工艺对分户厕所废水亚硝化反应启动的影响
Effect of pretreatment based on anaerobic sludge inoculation on the initiation of partial nitritation for household toilet wastewater treatment
-
摘要: 采用分户处理的方式对厕所废水进行单独处理是迅速改善乡村地区生活卫生条件的捷径。部分亚硝化-厌氧氨氧化方法的出现为分户厕所废水的处理提供了更为可持续的工艺选项。亚硝化反应是厌氧氨氧化反应的先决性步骤。以分户厕所废水为处理对象,在不接种亚硝化污泥的前提下,考察了在厕所废水预处理单元接种厌氧污泥对亚硝化反应启动的影响。结果表明,厌氧污泥的接种可将亚硝化反应的启动周期缩短至正常周期的50%,其作用机理位削弱了异养细菌对氨氧化细菌的竞争性抑制。以上研究结果可为分户厕所废水部分亚硝化反应的快速启动提供参考。Abstract: Household toilet wastewater treatment (HTWT) is a shortcut for improving the sanitary condition in developing rural areas. Partial nitritation anaerobic ammonia oxidation (PNAMX) provides a more economical and sustainable option for HTWT. Partial nitritation is a prerequisite step in PNAMX. In this study, the effect of anaerobic sludge inoculation in the pretreatment unit of toilet wastewater on the partial nitritation initiation (PNI) was investigated. The results showed that this strategy could almost save a half of PNI time comparing with the control reaction system. The mechanism of the anaerobic sludge inoculation is to attenuate the competitive inhibition of heterotrophic bacteria against ammonium oxidizing bacteria in the aerobic reaction section. This study can provide a strategy to the fast initiation of partial nitritation reaction in household toilet wastewater.
-
-
[1] FAJRI J A, FUJISAWA T, TRIANDA Y, et al. Effect of aeration rates on removals of organic carbon and nitrogen in small onsite wastewater treatment system (Johkasou)[EB/OL]. [2021-01-20]. https://doi.org/10.1051/matecconf/201814704008. [2] SHARMA M K, TYAGI V K, SAINI G, et al. On-site treatment of source separated domestic wastewater employing anaerobic package system[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 1209-1216. doi: 10.1016/j.jece.2016.01.024 [3] LI A, QIAN T, ZHU S, et al. Spontaneous initiation and maintenance of partial nitritation for household toilet wastewater treatment[J]. Desalination and Water Treatment, 2021, 217: 127-136. doi: 10.5004/dwt.2021.26747 [4] 姜黎安, 隋倩雯, 陈彦霖, 等. 低氨氮废水亚硝化的快速启动[J]. 环境工程学报, 2020, 14(5): 1252-1258. doi: 10.12030/j.cjee.201907015 [5] KINYUA M N, ELLIOTT M, WETT B, et al. The role of extracellular polymeric substances on carbon capture in a high rate activated sludge A-stage system[J]. Chemical Engineering Journal, 2017, 322: 428-434. doi: 10.1016/j.cej.2017.04.043 [6] MOSQUERA-CORRAL A, GONZÁLEZ F, CAMPOS J L, et al. Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds[J]. Process Biochemistry, 2005, 40(9): 3109-3118. doi: 10.1016/j.procbio.2005.03.042 [7] WU J, YAN G, ZHOU G, et al. Wastewater COD biodegradability fractionated by simple physical-chemical analysis[J]. Chemical Engineering Journal, 2014, 258: 450-459. doi: 10.1016/j.cej.2014.07.106 [8] GAO M, ZHANG L, FLORENTINO A P, et al. Performance of anaerobic treatment of blackwater collected from different toilet flushing systems: Can we achieve both energy recovery and water conservation?[J]. Journal of Hazardous Materials, 2019, 365: 44-52. doi: 10.1016/j.jhazmat.2018.10.055 [9] LI G, WU L, DONG C S, et al. Inorganic nitrogen removal of toilet wastewater with an airlift external circulation membrane bioreactor[J]. Journal of Environmental Sciences, 2007, 19(1): 12-17. doi: 10.1016/S1001-0742(07)60002-3 [10] GAO M, GUO B, ZHANG L, et al. Microbial community dynamics in anaerobic digesters treating conventional and vacuum toilet flushed blackwater[J]. Water Research, 2019, 160: 249-258. doi: 10.1016/j.watres.2019.05.077 [11] KNERR H, RECHENBURG A, KISTEMANN T, et al. Performance of a MBR for the treatment of blackwater[J]. Water Science and Technology, 2011, 63(6): 1247-1254. doi: 10.2166/wst.2011.367 [12] JIANG H, WEN Y, WANG Q, et al. Partial nitritation with aerobic duration control of carbon-captured blackwater: Process operation and model-based evaluation[J]. Chemical Engineering Journal, 2020, 401: 126060. doi: 10.1016/j.cej.2020.126060 [13] 国家环境保护总局, 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [14] GRAAFF M S D, ZEEMAN G, TEMMINK H, et al. Long term partial nitritation of anaerobically treated black water and the emission of nitrous oxide[J]. Water Research, 2010, 44(7): 2171-2178. doi: 10.1016/j.watres.2009.12.039 [15] WANG D, WANG Q, LALOO A, et al. Achieving stable nitritation for mainstream deammonification by combining free nitrous acid-based sludge treatment and oxygen limitation[J]. Scientific Reports, 2016, 6(1): 25547. doi: 10.1038/srep25547 [16] ZHANG D, SU H, ANTWI P, et al. High-rate partial-nitritation and efficient nitrifying bacteria enrichment/out-selection via pH-DO controls: Efficiency, kinetics, and microbial community dynamics[J]. Science of the Total Environment, 2019, 692: 741-755. doi: 10.1016/j.scitotenv.2019.07.308 [17] VAN DONGEN U, JETTEN M S, VAN LOOSDRECHT M. The SHARON®-Anammox® process for treatment of ammonium rich wastewater[J]. Water Science and Technology, 2001, 44(1): 153-160. doi: 10.2166/wst.2001.0037 [18] REGMI P, MILLER M W, HOLGATE B, et al. Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation[J]. Water Research, 2014, 57: 162-171. doi: 10.1016/j.watres.2014.03.035 [19] ANTHONISEN A C, LOEHR R C, PRAKASAM T B S, et al. Inhibition of nitrification by ammonia and nitrous acid[J]. Journal (Water Pollution Control Federation), 1976, 48(5): 835-852. [20] LI D, ZHANG S, LI S, et al. The nitrogen removal of autotrophic and heterotrophic bacteria in aerobic granular reactors with different feast/famine ratio[J]. Bioresource Technology, 2019, 272: 370-378. doi: 10.1016/j.biortech.2018.10.046 [21] TODT D, DÖRSCH P. Nitrous oxide emissions in a biofilm loaded with different mixtures of concentrated household wastewater[J]. International Journal of Environmental Science and Technology, 2015, 12(11): 3405-3416. doi: 10.1007/s13762-015-0778-1 [22] 狄斐, 隋倩雯, 陈彦霖, 等. 部分亚硝化-厌氧氨氧化处理磁混凝生活污水[J]. 中国环境科学, 2020, 40(11): 4712-4720. doi: 10.3969/j.issn.1000-6923.2020.11.009 [23] CHEN J, LIU X, PAVLOSTATHIS S G. Long-term evaluation of the effect of peracetic acid on a mixed aerobic culture: Organic matter degradation, nitrification, and microbial community structure[J]. Water Research, 2021, 190: 116694. doi: 10.1016/j.watres.2020.116694 [24] 马双忱, 于燕飞, 徐涛, 等. ORP在水环境污染防控方面的应用[J]. 工业水处理, 2020, 40(2): 14-18. [25] 赵永彬, 吴翠鲜. 氧化还原电位在污水和地表水净化中的作用[J]. 节能与环保, 2020(10): 29-30. doi: 10.3969/j.issn.1009-539X.2020.10.010 [26] 苏高强, 彭永臻. 基于ORP的控制策略在废水生物处理中的应用[J]. 工业水处理, 2011, 31(8): 11-15. doi: 10.3969/j.issn.1005-829X.2011.08.003