-
油田落地油泥是在油田生产过程中,井口溢流、作业落地以及集输过程中跑冒滴漏等造成的含油物质[1-2]。落地油泥的成分比较复杂,一般含有石油烃、水、矿物质和泥砂等物质。目前,落地油泥主要采用焚烧、热解和热水洗等工艺处置,但这些处置方法均存在处理成本高、工艺复杂或处理不彻底等问题[3-5]。因此,开发出经济、高效、环保的落地油泥无害化处置技术有利于油田企业的绿色和可持续发展。
落地油泥的生物降解处置对环境影响小、处理后不会改变泥砂的性质,是油泥无害处置中较为环保的技术之一[6-7]。在处置过程中,利用生物材料,就可以实现油泥的无害化处理,与其他技术相比经济、生态优势明显。然而,生物降解处置适用于含油率低的油泥[8],含油率一般需低于50 mg·g−1。这是因为,在含油率高于50 mg·g−1的条件下,一方面需要更长的生物处理周期;另一方面含油率过高会影响微生物的生长代谢。为解决这一问题,国外有学者提出采用掺土的办法降低含油率,但这种方法又会大幅度增加处理总量,存在一定局限性[1, 9]。从减量化的角度来看,热水洗法与生物降解处置具有良好的兼容性,在有效控制处理成本的前提下,可实现高含油落地油泥的经济、快速处置。
本研究以油田高含油落地油泥为供试材料,拟建立一种热水洗辅助微生物修复高含油落地油泥组合工艺。通过清洗剂类型及清洗温度的优化,以去除大部分的石油烃,使水洗后的含油残砂适用于进一步生物处理。在生物降解过程,探究了填料和烃降解菌对生物降解速率的影响,以期为油田石油污染土壤的治理提供参考。
热水洗辅助微生物修复高含油落地油泥
Remediation of high oil content of oil sludge-contaminated soil by hot water washing and biodegradation
-
摘要: 为解决油田落地油泥含油率高但不能直接进行生物无害化处置的问题,探索一种热水洗辅助微生物修复工艺。利用热水洗实验考察了清洗配方和水温对降低含油率的影响;从落地油泥中分离出石油烃降解菌,以用于含油残砂的微生物降解过程,同时探究填料和烃降解微生物对残砂中石油烃降解效果的影响。结果表明,鼠李糖脂清洗剂在总用量为0.5%、水洗时间30 min和50 ℃条件下,可将油泥含油率由107.1 mg·g−1降至为39.3 mg·g−1;水洗后残砂中的土著菌群数量出现了明显下降。分离获得了2株烃降解菌,并优选出具有增加油泥溶氧和保水的沼渣。将烃降解微生物和优选沼渣加入残砂后,石油烃生物降解效率得到显著提升,200 d后含油率降为4.62 mg·g−1。在此过程中,微生物优先降解分子量小的饱和烃和芳香烃组分,对胶质和沥青质等组分降解程度偏低。该研究结果可为油田高含油落地油泥的环保处置提供参考。Abstract: In order to solve the problem of high oil content of oil sludge in oilfields but not directly biologically harmless disposal, the pre-treatment of hot water washing and subsequent bioremediation were carried out. Environmental friendly cleaning agent and optimum working condition were screened. Oil degrading microorganisms were isolated from the soil and used to the bioremediation of the residual sands. The effect of bulking agent and the isolated microorganisms were evaluated. The results of oil displacement efficiency shown that the cleaning agent of rhamnolipid was capable of decreasing the oil content from 107.1 mg·g−1 to 39.3 mg·g−1. The suited condition were determined as follows: dosage of cleaning agent 0.5%, the reaction temperature 50 ℃, reaction time 30 min. After washing, the number of indigenous flora in the residual sands has decreased significantly. Two oil degrading microorganisms were isolated, and a better water holding and oxygen dissolving bulking agent of digestate was screened. The results of bioremediation indicated that adding the isolated two strain and bulking agent were in favor of improving the degradation rete, resulted in the oil content decreased to 4.62 mg·g−1 for 200 days. Oil property analysis showed that saturates and aromatics were preferentially degraded compared with the heavy component of resins and asphaltenes. The combined technology would provide technical support to the high oil content of oil sludge-contaminated soil.
-
表 1 现场不同取样点油泥组分组成
Table 1. Composition of oil sludge from different sampling points
取样点 含油率/
(mg·g−1)含水率/
%固含率/
%干物质含油率/
(mg·g−1)a 58.4 29.3 53.6 98.3 b 82.8 18.0 73.7 101 c 131 22.6 64.3 169 d 43.4 16.7 78.9 52.1 e 64.9 14.2 79.5 75.6 f 95.5 19.0 71.4 118 表 2 不同填料的化学成分
Table 2. Chemical properties of various bulking agents
填料名称 含油率/(mg·g−1) 总N/% 总P/% pH 有机质/% 客土 0.62 0.04 0.10 7.9 1.28 秸秆 — 0.69 0.12 7.4 75.1 沼渣 — 1.69 1.03 8.6 81.3 表 3 油田注入水基本理化性质
Table 3. Properties of the oil filed injected water
主要离子质量浓度/ (mg·L−1) 总矿化度/(mg·L−1) pH 温度/℃ 含油率/(mg·g−1) Ca2+ Mg2+ $ { {\rm{HCO}}_3^ - }$ Cl− ${{\rm{SO}}_4^{2 - } }$ Na++K+ 162.3 88.4 1032 5487 201.7 6421 13392 6.90 53.0 0.007 5 表 4 水洗前后落地油泥的理化性质变化
Table 4. Changes in properties of the water-washed oil-contaminated soil after and before washing
供试材料 总N/
(mg·L−1)总P/
(mg·L−1)pH 细微粒组分
含量/%微生物菌
含量/(个·mL−1)落地油泥 21.6 3.55 7.3 24.6 8×106 水洗后残砂 7.8 0.66 6.9 22.7 1×105 表 5 生物处理前后残砂中石油烃组分
Table 5. Component analysis of the hydrocarbons from various residual sands
检测项目或组分 未处理的残砂中石油烃组分质量分数/(mg·g−1) 处理200 d后的残砂中石油烃组分质量分数/(mg·g−1) 对照组 投加菌剂组 对照组 投加菌剂组 含油率 39.3±3.4 39.1±2.9 31.2±1.2 4.62±0.6 饱和烃 16.2±1.5 15.9±1.0 10.2±0.3 0.33±0.03 芳香烃 12.4±0.9 11.8±0.5 11.1±0.2 1.02±0.1 胶质 8.62±1.3 9.52±0.8 7.09±0.3 1.24±0.2 沥青质 2.10±0.5 1.88±0.4 2.86±0.4 2.03±0.1 -
[1] MINAI-TEHRANI D, ROHANIFAR P, AZAMI S. Assessment of bioremediation of aliphatic, aromatic, resin, and asphaltene fractions of oil-sludge-contaminated soil[J]. International Journal of Environmental Science & Technology, 2015, 12(4): 1253-1260. [2] DAS S, KUPPANAN N, CHANNASHETTAR V A, et al. Remediation of oily sludge- and oil-contaminated soil from petroleum industry: Recent developments and future prospects[J]. Recent Developments and Future Prospects, 2018, 3: 165-177. [3] SANKARAN S, PANDEY S, SUMATHY K. Experimental investigation on waste heat recovery by refinery oil sludge incineration using fluidised-bed technique[J]. Environmental Letters, 1998, 33(5): 829-845. [4] CHANG C Y, SHIE J L, LIN J P, et al. Major products obtained from the pyrolysis of oil sludge[J]. Energy Fuels, 2000, 14(6): 1176-1183. doi: 10.1021/ef0000532 [5] JIN G L J, CHEN T T, LU A, et al. Studying oily sludge treatment by thermo chemistry[J]. Arabian Journal of Chemistry, 2011, 9: 457-460. [6] VASUDEVAN N, RAJARAM P. Bioremediation of oil sludge-contaminated soil[J]. Environment International, 2001, 26(5): 409-411. [7] MARIN J A, HERNANDEZ T, GARCIA C. Bioremediation of oil refinery sludge by landfarming in semiarid conditions: Influence on soil microbial activity[J]. Environmental Research, 2005, 98(2): 190-195. [8] VIDALI M. Bioremediation. An overview[J]. Pure & Applied Chemistry, 2001, 73(7): 1163-1172. [9] GENOUW G, NAEYER F DE, MEENEN P V, et al. Degradation of oil sludge by landfarming: A case-study at the ghent harbour[J]. Biodegradation, 1994, 5(1): 37-46. doi: 10.1007/BF00695212 [10] 中华人民共和国环境保护部. 污染场地环境监测技术导则: HJ 25.2-2014[S]. 北京: 中国环境科学出版社, 2014. [11] 中华人民共和国环境保护部. 工业固体废物采样制样技术规范: HJ/T 20-1998[S]. 北京: 中国环境科学出版社, 1998. [12] 中华人民共和国环境保护部. 危险废物鉴别标准 毒性物质含量鉴别: GB5085.6-2007[S]. 北京: 中国环境科学出版社, 2007. [13] VIDALI M. Bioremediation. An overview[J]. Pure and Applied Chemistry, 2001, 73(7): 1163-1172. doi: 10.1351/pac200173071163 [14] 胡婧, 束青林, 孙刚正, 等. 油藏内源微生物演替规律及其对驱油效果的影响[J]. 中国石油大学学报(自然科学版), 2019, 43(1): 108-114. [15] 王亚娥, 李富生, 汤浅晶, 等. 好氧/厌氧污泥对17β-雌二醇的降解特性[J]. 中国给水排水, 2007, 23(9): 70-72. [16] 张涵, 张秀霞, 尚琼琼, 等. 秸秆载体腐解对微生物修复石油污染的影响[J]. 石油学报(石油加工), 2016, 32(4): 767-772. [17] HUANG Y J, PAN H, WANG Q L, et al. Enrichment of the soil microbial community in the bioremediation of a petroleum-contaminated soil amended with rice straw or sawdust[J]. Chemosphere, 2019, 224: 265-271. doi: 10.1016/j.chemosphere.2019.02.148 [18] 鲍士旦, 秦怀英, 劳家柽. 土壤农化分析[M]. 北京: 中国农业出版社, 1988. [19] LONG J, DRELICH J, XU Z, et al. Effect of operating temperature on water-based oil sands processing[J]. The Canadian Journal of Chemical Engineering, 2007, 85(5): 726-738. [20] 吴业辉, 邵宗泽. 海洋烷烃降解菌alcanivorax sp. A-11-3的分离鉴定及其降解酶基因研究[J]. 台湾海峡, 2008, 27(4): 427-434. [21] CAPPELLO S, DENARO R, GENOVESE M, et al. Predominant growth of alcanivorax during experiments on “oil spill bioremediation” in mesocosms[J]. Microbiological Research, 2007, 162(2): 185-190. doi: 10.1016/j.micres.2006.05.010 [22] 孙向楠. 苯甲酸钠降解菌的筛选、龙胆酸1, 2-双加氧酶基因的克隆与异源表达[D]. 北京: 中国科学院大学, 2015. [23] 崔志松. 海洋专性解烃菌cycloclasticus spp. 的代谢特性及协同降解高分子量多环芳烃的研究[D]. 青岛: 中国海洋大学, 2015. [24] 姜肸, 高伟, 李倩, 等. 南海高效石油降解菌的筛选及降解特性研究[J]. 环境科学学报, 2012, 32(7): 1572-1578. [25] 刘长建. 大连海域沉积物中石油烃的分布特征及微生物群落结构的变化规律[D]. 沈阳: 沈阳农业大学, 2018. [26] 左珊珊, 吴涓. 生物表面活性剂合成条件的优化及提取方法[J]. 环境工程学报, 2016, 10(6): 3325-3329. doi: 10.12030/j.cjee.201501070 [27] 高小朋, 姜钊, 高秀梅, 等. 石油降解菌产表面活性剂的条件优化[J]. 环境工程学报, 2013, 7(8): 448-452. [28] 李国丽, 康小虎, 翟立翔, 等. 石油降解菌产生物表面活性剂的研究进展[J]. 生物学杂志, 2019, 36(1): 83-86. [29] 高瑞丽, 朱俊, 汤帆, 等. 水稻秸秆生物炭对镉, 铅复合污染土壤中重金属形态转化的短期影响[J]. 环境科学学报, 2016, 36(1): 251-256. [30] 滕应, 骆永明, 李振高. 污染土壤的微生物修复原理与技术进展[J]. 土壤, 2007, 39(4): 497-502. [31] 葛振, 魏源送, 刘建伟, 等. 沼渣特性及其资源化利用探究[J]. 中国沼气, 2014, 1(3): 74-82. doi: 10.3969/j.issn.1000-1166.2014.03.017 [32] LASOTA J, BLONSKA E. Polycyclic aromatic hydrocarbons content in contaminated forest soils with different humus types[J]. Water Air and Soil Pollution, 2018, 229(6): 204. doi: 10.1007/s11270-018-3857-3 [33] MA C, WANG Y Q, ZHUANG L, et al. Anaerobic degradation of phenanthrene by a newly isolated humus-reducing bacterium, pseudomonas aeruginosa strain PAH-1[J]. Journal of Soils and Sediments, 2011, 11(6): 923-929. doi: 10.1007/s11368-011-0368-x