-
农村厕所革命的目的是面向现代化需求构建乡村环境卫生与污染治理的体系。当前已知的实现乡村环境卫生与污染治理现代化的路径有2条[1]。第1条路径为末端处理,组成设施主要是水冲厕所、管网、末端处理设施等,类似于城市系统。人类排泄物,与洗涤废水一起由管网收集后经处理设施处理后排放,其出水需要达到一定的水质标准[2]。由于农村地区支付能力的制约,上述设施的建设和运行仅在少数地区可以负担,如上海、北京,江苏等地。第2条路径为源头分离分类处理[3-6],目标是尽可能使人居活动中产生的物质流以闭合循环的方式运行,以期减少人居活动中的物质消耗,促进资源的回收与再利用,其组成设施主要是资源化厕所和粪尿的运输处置装置等。常见资源化厕所类型包括三格化粪池厕所、双瓮漏斗式厕所以及更为现代的负压源分离厕所。其中,三格化粪池厕所、双瓮漏斗式厕所等,由于其价格显著低廉及可负担的建设成本,根据农业部门统计数据,是目前我国农村地区厕所革命的主要形式。上述厕所是典型的资源化厕所,其产生的粪尿等,大多经无害化、稳定化后作为肥料施用于农田。相对于水冲厕所,上述厕所被更多村庄采用,这也是农村改厕的现实情况。以负压源分离厕所系统为例,一般将生活废物和废水分为排污废水(粪尿与高浓度餐厨废液)、洗涤废水和其他废物3大类,采用抽吸式管道收集系统收集粪尿、粉碎的厨余垃圾及高浓度餐厨废液,所收集的高浓度排污废水经过资源化处理之后,就近就地用于农田施肥,我们称之为现代田园循环模式[7]。尽管源分离之后,生活废水、废物中超过90%的氮、磷等通过资源化进行消纳利用,但洗涤废水往往不经处理而直接排放,对环境产生污染。因此,洗涤废水的排放处理问题仍然必须慎重对待,尤其是在满足卫生与环境双重需求的前提下节省排水的成本。相对于城市,乡村地区地广人稀、地形复杂且居住分散,源分离后的洗涤废水如果集中收集排放,管道铺设距离长、施工难度大且经济成本增加,多数乡村地区难以实行。因此,为了降低管道铺设成本、施工难度及充分利用乡村富余的土地资源,我们提出原位处理洗涤废水的相关技术。
厌氧池作为初级的生活废水处理设施,不仅可以使有机物发生水解、酸化等作用,提高废水的可生化性,有利于后续处理,而且经济实用。人工湿地作为一种成熟的低能耗、低成本、低投资的生态处理技术[8],具有其他常规废水处理技术不具备的优势。由于乡村地区地形复杂,施工困难,而多级布水模块化人工湿地有利于灵活施工,同时可以优化湿地内部水力条件,有利于废水中污染物的去除。因此,将源分离后的废水通过厌氧池-多级布水模块化人工湿地就地或就近处理后排入周边土地,既可以减少输水的成本,又可以减少废水处理成本[9-12],因而应成为优先采用的技术方案。目前,国内利用人工湿地处理乡村混合生活污水的研究报道较多[13-15],但在原水条件下,即家庭产生的废水未经其他预处理,利用农户家庭中的短距离管道直接进入农户庭院型处理设施的情况下,通过厌氧池-多级布水模块化人工湿地原位处理乡村家庭源分离后的洗涤废水,以及季节变化、污染负荷对其运行效果影响的研究尚未见报道。
针对上述问题,本研究选择长江三角洲地区有一定代表性的乡村家庭开展厌氧池-多级布水模块化人工湿地原位处理洗涤废水和灰水的研究。于2019年4月—2020年5月对连续运行约13个月的厌氧池-多级布水模块化人工湿地进行了采样及理化指标分析测试,分析了乡村家庭源分离后的洗涤废水、灰水的水质特征;评价了厌氧池-多级布水模块化人工湿地原位处理源分离后废水的运行效果以及季节变化、污染负荷对其处理效果的影响,以期为该工艺在乡村进一步推广应用提供参考。
农户庭院型生态工艺原位处理源分离后的洗涤废水
Farmer courtyard-type ecological process for onsite treatment of washing wastewater after source separation
-
摘要: 选择长江三角洲地区有一定代表性的乡村家庭,开展了厌氧池-多级布水模块化人工湿地原位处理源分离后的废水的实例研究,旨在掌握乡村家庭源分离后废水的水质特征,并通过厌氧池-多级布水模块化人工湿地,重点解决乡村家庭源分离后的废水原位净化达标排放问题。结果表明,耗氧有机物(以COD计)、BOD5、LAS (linear alkylbenzene sulfonates)是洗涤废水、灰水中的主要污染物质;季节变化、进水浓度对厌氧池-多级布水模块化人工湿地处理源分离后的废水中的耗氧有机物、LAS影响不显著,但季节变化对粪大肠菌群影响显著。总体上,2户农户的设施出水均符合《农田灌溉水质标准》(GB 5084-2005)水作作物的相关规定。Abstract: In this study, two representative rural households in the Yangtze River Delta were taken as test sites, then a case study of on-site treatment of wastewater after source separation by an anaerobic tank- modular constructed wetland with multi-level water distribution (AT-MCW) was conducted. The aims of this study were following: grasping the water quality characteristics of rural household wastewater after source separation, and solving the problem of up-to-standard discharge of wastewater after source separation from rural households through on-site treatment with AT-MCW. The results showed that oxygen-consuming organic matter (in COD), BOD5 and LAS (linear alkylbenzene sulfonates) were the main pollutants in washing wastewater and grey water; Seasonal changes and influent concentration had no significant effects on the treatment of oxygen-consuming organic matter and LAS in the two types of wastewater by AT-MCW, but seasonal changes had significant effects on fecal coliform; In general, the effluents from the facilities of AT-MCW in two rural household could meet the standard limit of water crop types in the Standards for Irrigation Water Quality (GB 5084-2005).
-
Key words:
- washing wastewater /
- source separation /
- on-site /
- constructed wetland /
- village
-
表 1 农户系统进出水中污染物各指标值
Table 1. Index values of pollutants of inlet and outlet of farmer system
农户 单元 SS/
(mg·L−1)BOD5/
(mg·L−1)SCOD/
(mg·L−1)COD/
(mg·L−1)LAS/
(mg·L−1)TN/
(mg·L−1) /${\rm{NH}}_4^ +\text{-N}$
(mg·L−1)TP/
(mg·L−1)FC最大可能
数/(个·L−1)农户1 进水 34±16 108±43 113±40 216±83 5.3±3.0 10.6±6.4 8.1±5.0 0.8±0.6 5.6×104±6.7×104 厌氧池 22±10 94±52 94±36 178±63 2.9±1.5 11.0±5.4 9.0±3.9 1.0±0.4 1.6×104±1.8×104 湿地 8±6 32±20 33±17 62±53 1.9±1.0 6.8±3.1 5.6±3.1 0.5±0.2 4.4×103±5.7×103 农户2 进水 57±36 188±93 272±112 431±171 18.8±11.6 13.1±6.6 8.8±5.8 0.8±0.8 2.7×105±6.1×105 厌氧池 36±15 141±79 250±118 318±152 12.6±7.1 16.0±8.8 11.2±5.7 1.2±0.8 3.6×104±6.0×104 湿地 8±7 38±28 57±32 67±31 3.5±1.6 7.9±4.8 6.4±5.1 0.3±0.3 1.5×104±4.4×104 -
[1] FAN B, HU M, WANG H, et al. Get in sanitation 2.0 by opportunity of rural China: Scheme, simulating application and life cycle assessment[J]. Journal of Cleaner Production, 2017, 147: 86-95. doi: 10.1016/j.jclepro.2017.01.093 [2] FAN B, HU M, GU J, et al. Economic comparison of different rural sewage treatment patterns[J]. China Water & Wastewater, 2015, 31(14): 20-25. [3] WERNER C, PANESAR A, RÜD S B, et al. Ecological sanitation: Principles, technologies and project examples for sustainable wastewater and excreta management[J]. Desalination, 2009, 248(1/2/3): 392-401. [4] KATUKIZA A Y, RONTELTAP M, NIWAGABA C B, et al. Sustainable sanitation technology options for urban slums[J]. Biotechnology Advances, 2012, 30(5): 964-78. doi: 10.1016/j.biotechadv.2012.02.007 [5] HAQ G, CAMBRIDGE H. Exploiting the co-benefits of ecological sanitation[J]. Current Opinion in Environmental Sustainability, 2012, 4(4): 431-435. doi: 10.1016/j.cosust.2012.09.002 [6] LANGERGRABER G, MUELLEGGER E. Ecological sanitation: A way to solve global sanitation problems?[J]. Environment Internation, 2005, 31(3): 433-444. [7] XU M, ZHU S, ZHANG Y, et al. Spatial-temporal economic analysis of modern sustainable sanitation in rural China: Resource-oriented system[J]. Journal of Cleaner Production, 2019, 233: 340-347. doi: 10.1016/j.jclepro.2019.06.103 [8] 陈昢圳, 郑向群, 华进城. 不同污染负荷对废砖垂直流人工湿地处理农村生活污水的影响[J]. 生态环境学报, 2019, 28(8): 1683-1690. [9] BERNARDES F S, HERRERA P G, CHIQUITO G M, et al. Relationship between microbial community and environmental conditions in a constructed wetland system treating greywater[J]. Ecological Engineering, 2019, 139: 105581. doi: 10.1016/j.ecoleng.2019.105581 [10] LAAFFAT J, OUAZZANI N, MANDI L. The evaluation of potential purification of a horizontal subsurface flow constructed wetland treating greywater in semi-arid environment[J]. Process Safety and Environmental Protection, 2015, 95: 86-92. doi: 10.1016/j.psep.2015.02.016 [11] NEMA A, YADAV K D, CHRISTIAN R A. Sustainability and performance analysis of constructed wetland for treatment of greywater in batch process[J]. International Journal of Phytoremediation, 2020, 22(6): 1-9. [12] DENG S, XIE B, KONG Q, et al. An oxic/anoxic-integrated and Fe/C micro-electrolysis-mediated vertical constructed wetland for decentralized low-carbon greywater treatment[J]. Bioresource Technology, 2020, 315: 123802. doi: 10.1016/j.biortech.2020.123802 [13] 刘彤彤. 碳源分离耦合强化生态处理技术净化农村生活污水效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. [14] WANG X, JIANG Z, FU A. Treatment of rural domestic sewage by combined technology of upflow anaerobic sludge blanket and two-stage constructed wetlands[J]. China Water & Wastewater, 2020, 36(11): 21-26. [15] 夏斌, 盛晓琳, 许枫, 等. A2O与人工湿地组合工艺处理长三角平原地区农村生活污水的效果[J]. 环境工程学报, 2021, 15(1): 181-192. doi: 10.12030/j.cjee.202002103 [16] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [17] LI F, WICHMANN K, OTTERPOHL R. Review of the technological approaches for grey water treatment and reuses[J]. Science of the Total Environment, 2009, 407(11): 3439-3449. doi: 10.1016/j.scitotenv.2009.02.004 [18] BOANO F, CARUSO A, COSTAMAGNA E, et al. A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits[J]. Science of the Total Environment, 2020, 711: 134731. doi: 10.1016/j.scitotenv.2019.134731 [19] NOUTSOPOULOS C, ANDREADAKIS A, KOURIS N, et al. Greywater characterization and loadings-physicochemical treatment to promote onsite reuse[J]. Journal of Environmental Management, 2018, 216: 337-346. [20] 薛念涛, 潘涛, 纪玉琨, 等. 好氧、厌氧、兼氧污水处理技术的原理: 兼谈水解酸化工艺的研发[J]. 环境工程, 2015, 33(S1): 43-48. [21] LI P, WANG Z, YUAN L, et al. Comparison of two different constructed wetland systems to treat swine wastewater[J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1341-1345. [22] SAEED T, SUN G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media[J]. Journal of Environmental Management, 2012, 112: 429-448. doi: 10.1016/j.jenvman.2012.08.011 [23] LI J, WEN Y, ZHOU Q, et al. Influence of vegetation and substrate on the removal and transformation of dissolved organic matter in horizontal subsurface-flow constructed wetlands[J]. Bioresource Technology, 2008, 99(11): 4990-4996. doi: 10.1016/j.biortech.2007.09.012 [24] ARUNBABU V, SRUTHY S, ANTONY I, et al. Sustainable greywater management with axonopus compressus (broadleaf carpet grass) planted in sub surface flow constructed wetlands[J]. Journal of Water Process Engineering, 2015, 7: 153-160. doi: 10.1016/j.jwpe.2015.06.004 [25] 张自杰. 排水工程(下册)[M]. 北京: 中国建筑工业出版社, 2015. [26] ZHU H, YAN B, XU Y, et al. Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios[J]. Ecological Engineering, 2014, 63: 58-63. doi: 10.1016/j.ecoleng.2013.12.018 [27] 孙群, 吴蕾, 夏文香, 等. 人工湿地中指示和病原微生物分布与衰减研究[J]. 安全与环境学报, 2009, 9(5): 63-66. doi: 10.3969/j.issn.1009-6094.2009.05.015 [28] 项学敏, 杨洪涛, 周集体, 等. 人工湿地对城市生活污水的深度净化效果研究: 冬季和夏季对比[J]. 环境科学, 2009, 30(3): 713-719. doi: 10.3321/j.issn:0250-3301.2009.03.015 [29] 廖新俤, 骆世明. 人工湿地对猪场废水有机物处理效果的研究[J]. 应用生态学报, 2002, 13(1): 113-117. doi: 10.3321/j.issn:1001-9332.2002.01.025 [30] 崔芳. 进水浓度对人工湿地净化城市湖泊水体影响研究[J]. 水资源与水工程学报, 2010, 21(3): 101-103.