-
微生物燃料电池(microbial fuel cell,MFC)是污水处理领域的一个研究热点。MFC阳极表面生长的产电微生物的生长、活性和产电能力对MFC的性能、污水处理的效果均有重要影响。地杆菌(Geobacter)因其出色的产电能力成为这类微生物中广泛被学术界关注的电活性细菌[1]。然而,污水中重金属等具有生物毒性的组分会影响Geobacter的生长生存和产电能力,进而制约MFC的产电性能和运行效果[2]。因此,研究Geobacter对重金属的耐受机制对MFC在污水处理领域的应用和发展具有重要意义和现实价值。
银及其相关产品广泛应用于电子、电镀、感光材料、化工工业和科研领域。其中,照相业和电镀业是可溶性含银废液的2大主要来源,主要涉及到定影废液和电镀废液[3]。以定影废液为例,世界每年生产感光材料所消耗的白银在3 000 t以上,我国每年的消耗量也超过了100 t。在洗印过程中,这些感光材料中70%以上的Ag会溶解进入定影废液[4]。除了工业含银废水,Ag在环境中的迁移还来自于金属银纳米颗粒(nAg)。银纳米颗粒是一种广泛应用的抗菌剂。自2010年以来,我国纳米银抗菌剂的市场需求量已超过5×106 t[5]。然而,人类活动释放的银纳米颗粒进入自然生态环境中会形成银胶体。银胶体主要以银单质颗粒和银离子(Ag+)形式存在[6]。同时,银胶体的毒性主要来源于Ag+[7],应妥善监测和处理。
细菌对重金属的耐受能力即其细胞结构具有的将有毒金属离子外排或泵出细胞的能力。目前,已发现3种将有毒重金属转运排出细胞的机制,分别依赖于抗瘤细胞分裂蛋白(resistance-nodulation-cell division super family,RND)家族、助阳离子扩散体(cation diffusion failitator,CDF)家族和P型ATP酶(P-type ATPase)家族。其中,由P型ATP酶驱动的金属外排被认为是细菌抵抗重金属毒性的主要模式[8]。在基于P型ATP酶的重金属抵抗模式中,有毒重金属离子(如Ag+、Cu2+)进入细胞后会诱导细胞合成CopZ和CopA蛋白。其中,CopZ蛋白负责结合细胞质中的金属离子,并将其转移至位于细胞膜的转运蛋白CopA上,并由CopA将其转运出细胞[8]。因此,由copZ基因编码的CopZ蛋白对细菌抵抗重金属毒性具有重要作用。然而,不同细菌利用P型ATP酶家族系统所能抵抗的重金属种类存在较大差别,需要分别探究。
截至目前,对于Geobacter的P型ATP酶系统耐受重金属的研究尚未见报道。本研究以Geobacter的模式菌种硫还原地杆菌(Geobacter sulfurreducens)为代表,研究其对Ag+的耐受能力,并对其P型ATP酶系统中copZ基因对Ag+耐受能力的内在影响机制进行深入探究,以期在MFC系统内揭示较高浓度Ag+对G. sulfurreducens产能性能的影响。
微生物燃料电池中地杆菌对Ag+的耐受机理及其对产电性能的影响
Tolerance mechanism of Geobacter sulfurreducens to silver ion and its effects on electricity generation in microbial fuel cell
-
摘要: 微生物燃料电池(MFC)是污水处理领域的一个研究热点,地杆菌(Geobacter)因其出色的产电能力被广泛关注。自然水环境中,重金属等具有生物毒性的组分会影响Geobacter的生长生存和产电能力,进而影响MFC的产电性能。Geobacter对Ag+等多种重金属具有较强的耐受能力,然而其耐受较高浓度重金属的机理尚不明晰。选用Geobacter的模式菌种硫还原地杆菌(Geobacter sulfurreducens)作为研究对象,研究了copZ基因对G. sulfurreducens耐受Ag+的调控作用。结果表明:在0.05 mmol·L−1Ag+的培养条件下,野生型G. sulfurreducens的copZ基因转录量提升了24.8倍;当把copZ基因从G. sulfurreducens基因组中敲除后,G. sulfurreducens对Ag+的耐受能力显著下降,在 Ag+浓度为0.01 mmol·L−1的培养条件下,copZ基因缺失型G. sulfurreducens菌株的生长速率仅为Ag+浓度为1 mmol·L−1 的培养条件下野生型G. sulfurreducens的33.3%;在接种copZ基因缺失型G. sulfurreducens菌株的MFC体系内加入0.05 mmol·L−1 Ag+后,MFC的电流减小6.99%。本研究结果证明了copZ基因对G. sulfurreducens耐受Ag+具有明显的调控作用,揭示了较高浓度Ag+对MFC体系中G. sulfurreducens产能性能的影响机制。Abstract: Microbial fuel cell (MFC) is a hot spot research area in sewage treatment. Geobacter is widely recognized in the field of MFC due to its excellent electricity generation ability. The biologically toxic components such as heavy metals in the natural water environment will affect the growth and survival of Geobacter and the ability to generate electricity, which in turn affects the electricity generation performance of MFC. Geobacter is generally tolerant to various kinds of heavy metals such as Ag+. However, the mechanism of its tolerance to higher concentrations of heavy metals is still unclear. In this study, Geobacter sulfurreducens, a model species of Geobacter, was selected to study the regulation of the copZ gene on G. sulfurreducens’s tolerance to Ag+. Results showed that the transcription of the copZ gene of wild-type G. sulfurreducens increased by 24.8 times under 0.05 mmol·L−1Ag+. When copZ was knocked out from the G. sulfurreducens genome, the tolerance of G. sulfurreducens to Ag+ decreased significantly. The growth rate of the copZ-deficient G. sulfurreducens strain in the presence of 0.01 mmol·L−1 Ag+ was only 33.3% of that of the wild-type G. sulfurreducens in the presence of 1 mmol·L−1Ag+. When 0.05 mmol·L−1 Ag+ was added to the microbial fuel cell (MFC) system which inoculated with the copZ -deficient G. sulfurreducens strain, the output current of the MFC decreased by 6.99%. This study proved that the copZ has a significant regulatory effect on G. sulfurreducens tolerance to Ag+, and revealed the internal mechanism of high Ag+ concentration influence on the electricity productivity performance in the G. sulfurreducens MFC system.
-
Key words:
- microbial fuel cell /
- Geobacter sulfurreducens /
- copZ gene /
- heavy metal resistance /
- silver ion
-
表 1 qRT-PCR引物序列
Table 1. Primer sequences for qRT-PCR
引物名称 前引物序列 后引物序列 copZ_45f/168r AGTGATCGTGGTGGTGCTCT GAGCGTCTTCTCGATCTTGC copA_2263f/2368r GCCGGGGTCCTCTACTATCC GGAGCAGGATCGAGTTGGTC czcA1_451f/561r CCCATGGAGTTGAAGGAGAC CACTTGGTACTGCCGCTTTT czcA2_2276f/2374r AAGAGAACCGCAGCTTCGAC TGCCGGTTTTCGTAGTGATG cdf1_681f/796r GGTCAATGCCGTTCATCAGA GTCGTAGAACCTCGGCTTGC cdf2_781f/876r ATCGCCACGTGTGTCAAAAA ATCCTCATGCTCCTCGTCGT 表 2 copZ基因上游和下游引物序列
Table 2. Primer sequences for upstream and downstream of copZ
引物名称 引物序列 copZ_up_f GATGCGGCCGTCAACGTCAA copZ_up_r TATCCTAGGCATGACAGGCTCCTTTGAAG copZ_dwn_f TATCCTAGGACCGGCAGTACCACCGCCTT copZ_dwn_r TCGGTGGCGAACTTCTTGTTGC -
[1] LOVLEY D R, UEKI T, TIAN Z, et al. Geobacter: The microbe electric's physiology, ecology, and practical applications[J]. Advances in Microbial Physiology, 2011, 59: 1-100. [2] BURKHARDT E M, BISCHOFF S, AKOB D M, et al. Heavy mental tolerance of Fe(Ⅲ)-reducing microbial communities in contaminated creek bank soils[J]. Applied & Environmental Microbiology, 2011, 77(9): 3132. [3] 黄美荣, 李振宇, 李新贵. 含银废液来源及其回收方法[J]. 工业用水与废水, 2005, 36(1): 9-12. doi: 10.3969/j.issn.1009-2455.2005.01.003 [4] 李岳泰. 从定影废液中回收银的新方法[J]. 湖南有色金属, 1985(5): 55-56. [5] 胡烈海, 朱新根, 余双, 等. 纳米银抗菌应用的研究进展[J]. 中国抗生素杂志, 2020, 45(8): 745-750. doi: 10.3969/j.issn.1001-8689.2020.08.003 [6] WANG Z, CHEN J G, LI X H, et al. Aquatic toxicity of nanosilver colloids to different trophic organisms: Contributions of particles and free silver ion[J]. Environmental Toxicology & Chemistry, 2012, 31(10): 2408-2413. [7] MIAO A J, SCHWEHR K A, XU C, et al. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances[J]. Environmental Pollution, 2009, 157(11): 3034-3041. doi: 10.1016/j.envpol.2009.05.047 [8] BONDARCZUK K, PIOTROWSKA-SEGET Z. Molecular basis of active copper resistance mechanisms in gram-negative bacteria[J]. Cell Biology and Toxicology, 2013, 29(6): 397-405. doi: 10.1007/s10565-013-9262-1 [9] COPPI M V, LEANG C, SANDLER S J, et al. Development of a genetic system for Geobacter sulfurreducens[J]. Applied & Environmental Microbiology, 2001, 67(7): 3180. [10] MOUSER P J, HOLMES D E, PERPETUA L A, et al. Quantifying expression of Geobacter spp. oxidative stress genes in pure culture and during in situ uranium bioremediation[J]. The ISME Journal, 2009, 3(4): 454-465. doi: 10.1038/ismej.2008.126 [11] AKLUJKAR M, LOVLEY D R. Interference with histidyl-tRNA synthetase by a CRISPR spacer sequence as a factor in the evolution of Pelobacter carbinolicus[J]. BMC Evolutionary Biology, 2010, 10(1): 230. doi: 10.1186/1471-2148-10-230 [12] ODERMATT A, SUTER H, KRAPF R, et al. Primary structure of two P-type ATPases involved in copper homeostasis in Enterocuccus hirae[J]. Journal of Biological Chemistry, 1993, 268(17): 12775-12779. doi: 10.1016/S0021-9258(18)31455-8 [13] BANCI L, BERTINI I, CIOFI-BAFFONI S, et al. Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis[J]. Biochemistry, 2003, 42(7): 1939. doi: 10.1021/bi027096p [14] HWANG M G, KATAYAMA H, OHAGKI S, et al. Inactivation of Legionella pneumophila and Pseudomonas aeruginosa: Evaluation of the bactericidal ability of silver cations[J]. Water Research, 2007, 41(18): 4097-4104. doi: 10.1016/j.watres.2007.05.052 [15] RAIMUNDA D, GONZÁLEZ-GUERRERO M, LEEBER B W, et al. The transport mechanism of bacterial Cu+-ATPases: Distinct efflux rates adapted to different function[J]. BioMetals, 2011, 24(3): 467-475. doi: 10.1007/s10534-010-9404-3