[1] |
LOVLEY D R, UEKI T, TIAN Z, et al. Geobacter: The microbe electric's physiology, ecology, and practical applications[J]. Advances in Microbial Physiology, 2011, 59: 1-100.
|
[2] |
BURKHARDT E M, BISCHOFF S, AKOB D M, et al. Heavy mental tolerance of Fe(Ⅲ)-reducing microbial communities in contaminated creek bank soils[J]. Applied & Environmental Microbiology, 2011, 77(9): 3132.
|
[3] |
黄美荣, 李振宇, 李新贵. 含银废液来源及其回收方法[J]. 工业用水与废水, 2005, 36(1): 9-12. doi: 10.3969/j.issn.1009-2455.2005.01.003
|
[4] |
李岳泰. 从定影废液中回收银的新方法[J]. 湖南有色金属, 1985(5): 55-56.
|
[5] |
胡烈海, 朱新根, 余双, 等. 纳米银抗菌应用的研究进展[J]. 中国抗生素杂志, 2020, 45(8): 745-750. doi: 10.3969/j.issn.1001-8689.2020.08.003
|
[6] |
WANG Z, CHEN J G, LI X H, et al. Aquatic toxicity of nanosilver colloids to different trophic organisms: Contributions of particles and free silver ion[J]. Environmental Toxicology & Chemistry, 2012, 31(10): 2408-2413.
|
[7] |
MIAO A J, SCHWEHR K A, XU C, et al. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances[J]. Environmental Pollution, 2009, 157(11): 3034-3041. doi: 10.1016/j.envpol.2009.05.047
|
[8] |
BONDARCZUK K, PIOTROWSKA-SEGET Z. Molecular basis of active copper resistance mechanisms in gram-negative bacteria[J]. Cell Biology and Toxicology, 2013, 29(6): 397-405. doi: 10.1007/s10565-013-9262-1
|
[9] |
COPPI M V, LEANG C, SANDLER S J, et al. Development of a genetic system for Geobacter sulfurreducens[J]. Applied & Environmental Microbiology, 2001, 67(7): 3180.
|
[10] |
MOUSER P J, HOLMES D E, PERPETUA L A, et al. Quantifying expression of Geobacter spp. oxidative stress genes in pure culture and during in situ uranium bioremediation[J]. The ISME Journal, 2009, 3(4): 454-465. doi: 10.1038/ismej.2008.126
|
[11] |
AKLUJKAR M, LOVLEY D R. Interference with histidyl-tRNA synthetase by a CRISPR spacer sequence as a factor in the evolution of Pelobacter carbinolicus[J]. BMC Evolutionary Biology, 2010, 10(1): 230. doi: 10.1186/1471-2148-10-230
|
[12] |
ODERMATT A, SUTER H, KRAPF R, et al. Primary structure of two P-type ATPases involved in copper homeostasis in Enterocuccus hirae[J]. Journal of Biological Chemistry, 1993, 268(17): 12775-12779. doi: 10.1016/S0021-9258(18)31455-8
|
[13] |
BANCI L, BERTINI I, CIOFI-BAFFONI S, et al. Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis[J]. Biochemistry, 2003, 42(7): 1939. doi: 10.1021/bi027096p
|
[14] |
HWANG M G, KATAYAMA H, OHAGKI S, et al. Inactivation of Legionella pneumophila and Pseudomonas aeruginosa: Evaluation of the bactericidal ability of silver cations[J]. Water Research, 2007, 41(18): 4097-4104. doi: 10.1016/j.watres.2007.05.052
|
[15] |
RAIMUNDA D, GONZÁLEZ-GUERRERO M, LEEBER B W, et al. The transport mechanism of bacterial Cu+-ATPases: Distinct efflux rates adapted to different function[J]. BioMetals, 2011, 24(3): 467-475. doi: 10.1007/s10534-010-9404-3
|