-
挥发性有机化合物(volatile organic compounds,VOCs)是一类有机化合物的统称,是指饱和蒸气压大于70 Pa(常温下)、沸点为50~260 ℃(常压下)的有机化合物,主要包括酮类、烃类、芳烃类、醛类、醇类、脂类、胺类等物质[1]。许多VOCs类物质对人体及各个感官有刺激作用,且具有一定的毒性。因此,VOCs的治理迫在眉睫[2]。
VOCs的人为排放主要来自使用有机溶剂的工业活动、燃料燃烧和交通运输工程。据统计,我国VOCs的排放量非常大,已经远远高于粉尘和二氧化硫等污染物的排放量[3]。目前,处理VOCs的方法主要有2类:一是以工艺和设备改善为主的预防措施;二是以末端治理为主的控制措施。国内外VOCs处理技术主要是末端处理技术,包括吸附技术、化学吸收技术、催化燃烧技术、光催化技术和生物降解技术等[4-7]。其中,吸附处理技术具有效率高、能耗低、吸附剂再生效果好、实用且易于推广的特点,因而在VOCs处理和回收工艺中得到较为广泛的应用[8-9]。常用的活性炭吸附剂因具有再生困难、疏水性差、易燃烧等缺点,在工业应用中仍存在一定的局限性。与活性炭相比,分子筛具有不易燃烧、吸附选择性强等优点,并且其物理性质稳定、容易脱附,这些特点使其成为潜在的吸附剂[10-11]。
NaY分子筛比表面积大,微孔结构发达,对不同VOCs均具有良好的吸附性能,是优良的吸附材料。NaY分子筛对VOCs分子的吸附性能主要取决于内部孔道结构,不同沸石分子筛内部孔道结构不同,其吸附特性存在显著差异。ZHANG等[12]研究了不同多孔材料NaY、SBA-15、MCM-41和SiO2对甲苯的吸附性能,发现微孔含量最多的NaY沸石对甲苯吸附容量最大。在甲苯浓度较低时,NaY分子筛平衡吸附容量与活性炭接近,而ZSM-5、MCM-41等分子筛的平衡吸附容量均小于NaY分子筛[12]。张媛媛[13]采用硅烷化改性的方法对NaY分子筛进行改性,在高湿条件下,对甲苯和乙酸乙酯吸附性能进行了测定,发现改性后NaY抗湿性能明显提高。周瑛等[14]、王稚真[15]考察了NaY分子筛对含水蒸气VOCs的吸附性能,并通过改性制备出疏水性能优良的Y型分子筛。LIU等[16]研究了Pt对NaY沸石吸附乙醇的影响,发现Pt团簇可与乙醇分子形成化学键,增强了对乙醇的选择性吸附。NIGAR等[17]考察了干空气情况下不同硅铝比Y沸石对己烷的吸附特性,证明低硅铝比NaY、HY对己烷吸附容量高。这些研究探讨了分子筛疏水性能、硅铝比、化学键等因素对吸附剂吸附性能的影响,但吸附质种类单一,缺乏对多种典型VOCs吸附性能的系统研究。而实际工业废气种类繁多且含有水分,因此,本研究以NaY型分子筛作为吸附剂,从温度、湿度、进气浓度、循环使用性及吸附质物理性质等方面,较全面地探究了工业过程中排放的3种典型单组分VOCs丙酮、邻二甲苯、乙酸乙酯与含湿VOCs在NaY分子筛上的吸附性能,最终通过动力学方程进行拟合,得到吸附性能参数,绘制理论穿透曲线,为研究工业应用中分子筛的吸附行为提供参考。
NaY沸石分子筛在VOCs处理中的应用
Application of NaY zeolite molecular sieve in VOCs treatment
-
摘要: 为深入研究分子筛吸附VOCs的性能,采用固定床动态吸附法,对NaY分子筛吸附3种典型VOCs的性能进行了探究,考察了吸附温度、湿度、进气浓度和吸附质物理性质对吸附容量的影响,并探讨了NaY分子筛的循环使用性能;通过Yoon-Nelson模型,从吸附动力学角度,对单组分VOCs吸附穿透曲线进行了拟合。结果表明:NaY分子筛对3种VOCs的吸附饱和时间分别为丙酮355 min,邻二甲苯320 min,乙酸乙酯220 min;相对应的平衡吸附容量分别为丙酮176 mg·g−1,邻二甲苯196 mg·g−1,乙酸乙酯185 mg·g−1。NaY分子筛对VOCs吸附能力排序为邻二甲苯>乙酸乙酯>丙酮。温度由303 K升至328 K时,3种VOCs吸附容量均分别下降,邻二甲苯下降3.66%,乙酸乙酯下降2.87%,丙酮下降10.0%;VOCs相对湿度为30%时,吸附容量显著降低;进气浓度为660 mg·m−3时,出现吸附交叉的现象;NaY分子筛具有较好的循环使用性;吸附容量与沸点、分子质量存在正相关关系;3种VOCs在NaY分子筛固定床的吸附速率排序为乙酸乙酯>邻二甲苯>丙酮。Yoon-Nelson模型能够较好地模拟NaY分子筛吸附不同VOCs的过程,为分子筛的工业应用提供了参考。Abstract: In order to further study the VOCs adsorption performance on zeolite, the adsorption performance of three typical VOCs on NaY molecular sieve was studied by fixed bed dynamic adsorption method. The effects of adsorption temperature, humidity, concentration of inlet and physical properties of adsorbent on adsorption capacity were investigated, as well as the recycling property of NaY molecular sieve. The adsorption penetration curve of single-component VOCs was fitted with the Yoon-Nelson model from the perspective of adsorption kinetics. The results showed that the saturated adsorption times of acetone, o-xylene, and ethyl acetate on NaY molecular sieve were 355, 320 and 220 min, respectively, and their corresponding equilibrium adsorption capacities were 176, 196 and 185 mg·g−1, respectively. The adsorption capacity of VOCs on NaY was in the order of o-xylene>ethyl acetate>acetone. When the temperature increased from 303 K to 328 K, the adsorption capacities of three VOCs decreased by 3.66%, 2.87% and 10.0% for o-xylene, ethyl acetate, and acetone, respectively. At VOCs relative humidity of 30%, its adsorption capacity decreased significantly. Adsorption curve intersection occurred when inlet concentration was 660 mg·m−3. NaY molecular sieve had a good recycling performance. A positive correlations were obseved between the adsorption capacity and the physical properties of VOCs such as boiling point, molecular weight. The order of adsorption rate of three VOCs on NaY was as follows: ethyl acetate>o-xylene>acetone. The Yoon-Nelson model parameters could accurately predict VOCs adsorption behavior of NaY molecular sieve in a fixed bed reactor. It can provide basic data for industrial application of molecular sieve.
-
Key words:
- eolite molecular sieve /
- VOCs /
- adsorbents /
- fixed-bed
-
表 1 穿透时间与吸附容量
Table 1. Penetration time and adsorption capacity
VOCs 穿透时间/min 饱和时间/min 平衡吸附容量/(mg·g−1) 邻二甲苯 190 320 185 丙酮 220 355 176 乙酸乙酯 120 220 168 注:T=25 ℃,C0=660 mg·m−3,空速30 000 mL·(h·g)−1。 表 2 在湿度为30%条件下NaY对3种含湿VOCs穿透时间与吸附容量
Table 2. Penetration time and adsorption amount of three kinds of wet VOCs on NaY at 30% relative humidity
VOCs 穿透时间/min 饱和吸附容量/(mg·g−1) 邻二甲苯 20 5.21 丙酮 35 31.66 乙酸乙酯 25 24.99 注:T=25 ℃,C0=660 mg·m−3,空速30 000 mL·(h·g)−1。 表 3 NaY与HY吸附邻二甲苯穿透时间与吸附容量
Table 3. Penetration time and adsorption capacity of NaY and HY toward o-xylene adsorption
样品 穿透时间/
min饱和吸附容量/
(mg·g−1)饱和时间/
minSBET/
(m2·g−1)HY 185 157 270 448.1 NaY 190 185 320 568.6 注:T=25 ℃,C0=660 mg·m−3,空速30 000 mL·(h·g)−1。 表 4 吸附质的物性参数
Table 4. Physical properties of adsorbents
VOCs 相对分
子质量动力学
直径/nm沸点/
K20 ℃密度/
(g·cm−3)20 ℃蒸
汽压/kPa邻二甲苯 106.16 0.65 417.6 0.885 0.652 乙酸乙酯 88.11 0.48 350.2 0.901 10.10 丙酮 58.08 0.482 329.44 0.791 24.65 表 5 Yoon-Nelson方程拟合模型参数
Table 5. Yoon-nelson equation fitting parameters
VOCs $k'$ τ 丙酮 0.033 9 282.18 邻二甲苯 0.041 5 261.92 乙酸乙酯 0.055 1 162.57 -
[1] 赵琳. VOC的危害及回收与处理技术[J]. 化学教育, 2015, 36(16): 1-6. [2] 郭森, 童莉, 周学双. 石化行业的VOCs排放控制管理[J]. 化工环保, 2014, 34(4): 356-360. doi: 10.3969/j.issn.1006-1878.2014.04.012 [3] 魏巍. 中国人为源挥发性有机化合物的排放现状及未来趋势[D]. 北京: 清华大学, 2009. [4] KIM H, JAFFE P R. Spatial distribution and physiological state of bacteria in a sand column experiment during the biodegradation of toluene[J]. Water Research, 2007, 41(10): 2089-2100. doi: 10.1016/j.watres.2007.02.018 [5] SAQER S M, KONDARIDES D I, VERYKIOS X E. Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on γ-Al2O3[J]. Applied Catalysis B: Environmental, 2011, 103(3/4): 275-286. [6] HUANG H B, XU Y F, LEUNG Q Y. Low temperature catalytic oxidation of volatile organic compounds: A review[J]. Catalysis Science & Technology, 2015, 5: 2649-2669. [7] KAMAL M S, RAZZAK S A, HOSSAIN M M. Catalytic oxidation of volatile organic compounds (VOCs): A review[J]. Atmospheric Environment, 2016, 140: 117-134. doi: 10.1016/j.atmosenv.2016.05.031 [8] 卢晗锋, 殷操, 黄海凤, 等. 高分子吸附树脂对VOCs的动态吸附及其穿透模型[J]. 浙江工业大学学报, 2012, 40(4): 423-427. [9] LILLO-RODENAS M A, FLETCHER A J, THOMAS K M, et al. Competitive adsorption of a benzene-toluene mixture on activated carbons at low concentration[J]. Carbon, 2006, 44(8): 1455-1463. doi: 10.1016/j.carbon.2005.12.001 [10] 刘鹏, 龙超. 超高交联吸附树脂对气体中三氯乙烯的吸附研究[J]. 离子交换与吸附, 2009, 25(5): 411-418. [11] 郭坤敏. 活性炭吸附技术及其在环境工程中的应用[M]. 北京: 化学工业出版社, 2016. [12] ZHANG W, QU Z, LI X. Comparison of dynamic adsorption/desorption characteristics of toluene on different porous materials[J]. Environmental Science & Pollution Research, 2012, 24: 52-54. [13] 张媛媛. 疏水性硅基吸附剂的制备及VOCs吸附性能研究[D]. 成都: 西南交通大学, 2017. [14] 周瑛, 卢晗锋, 王稚真, 等. VOCs和水在Y型分子筛表面的竞争吸附[J]. 环境工程学报, 2012, 6(5): 1653-1657. [15] 王稚真. Y型分子筛吸附VOCs性能的研究[D]. 杭州: 浙江工业大学, 2010. [16] LIU M C, HSIEH C C, LEE J F. Impact of Pt and V2O5 on ethanol removal from moist air using pellet silica-bound NaY[J]. Chemical Engineering Journal, 2015, 54: 8678-8680. [17] NIGAR H, NAVASCUES N, DELALGLESIA O. Removal of VOCs at trace concentration levels from humid air by microwave swing adsorption, kinetics and proper sorbent selection[J]. Separation and Purification Technology, 2015, 9(4): 193-200. [18] TAO W H, YANG T C, CHANG Y N, et al. Effect of moisture on the adsorption of volatile organic compounds by zeolite 13X[J]. Journal of Environmental Engineering, 2004, 130(10): 1210-1216. doi: 10.1061/(ASCE)0733-9372(2004)130:10(1210) [19] BARTHOMEUF D, DE MALLMANN A. Adsorption of aromatics in NaY and A1P04-5. Correlation with the sorbent properties in separations[J]. Industrial & Engineering Chemistry Research, 1990, 29(7): 1435-1438. [20] 赵振国. 吸附作用应用原理[M]. 北京: 化学工业出版社, 2005. [21] HISASHI Y, AKIO K, TSUTOMU H, et al. Performance of VOC abatement by thermal swing honeycomb rotor adsorbers[J]. American Chemical Society, 2007, 46: 4316-4322. [22] 黄海凤, 褚翔, 卢晗锋, 等. MCM-41和SBA-15动态吸附VOCs特性和穿透模型[J]. 高校化学工程学报, 2011, 25(2): 219-224. doi: 10.3969/j.issn.1003-9015.2011.02.007 [23] OUMAIMA D, HADJ H. Use of silica particles made by nonionic surfactant for VOCs sorption[J]. Journal of Materials Science, 2016, 7(9): 3371-3380. [24] 梁欣欣. 负载型分子筛对挥发性有机气体的吸附特性研究[D]. 西安: 西安建筑科技大学, 2015. [25] 顾勇义. ZSM-5沸石分子筛吸附脱附VOCs性能的研究[D]. 杭州: 浙江工业大学, 2012. [26] GUILLEMOT M, MIJOIN J, MIGNARD S, et al. Volatile organic compounds (VOCs) removal over dual functional adsorbent/catalyst system[J]. Applied Catalysis B: Environmental, 2007, 75(3/4): 249-255. [27] 金伟力. 用于工业有机废气治理的分子筛吸附转轮高性能化研究[C]//中国环境科学学会. 2017中国环境科学学会科学与技术年会论文集(第四卷), 2017: 539-544. [28] 洪新, 李云赫, 高畅, 等. 改性NaY分子筛吸附脱除模拟燃料油中碱性氮化物[J]. 精细石油化工, 2018, 35(3): 20-24. doi: 10.3969/j.issn.1003-9384.2018.03.005 [29] LEE D G, HAN Y J, LEE C H. Steam regeneration of acetone and toluene in activated carbon and dealuminated Y-zeolite beds[J]. Korean Journal of Chemical Engineering, 2012, 29: 1246-1252. doi: 10.1007/s11814-012-0044-x [30] 刘光启, 马连湘, 项曙光. 化学化工物性数据手册[M]. 北京: 化学工业出版社, 2012. [31] 陈金妹, 张健. ASAP2020比表面积及孔隙分析仪的应用[J]. 分析仪器, 2009(3): 61-64. doi: 10.3969/j.issn.1001-232X.2009.03.013 [32] COSNIER F, CELZARD A, FURDIN G, et al. Hydrophobi-sation of active carbon surface and effect on the adsorption of water[J]. Carbon, 2005, 43(12): 2554-2563. doi: 10.1016/j.carbon.2005.05.007 [33] LEE S W, CHEON J K, PARK H J, et al. Adsorption characteristics of binary vapors among acetone, MEK, benzene, and toluene[J]. Korean Journal of Chemical Engineering, 2008, 25(5): 1154-1159. doi: 10.1007/s11814-008-0190-3 [34] 梁大明. 中国煤质活性炭[M]. 北京: 化学工业出版社, 2008. [35] YOON Y H, NELSON J H. Application of gas adsorption kinetics: II. A theoretical model for respirator cartridge service life and its practical applications[J]. American Industrial Hygiene Association Journal, 1984, 45(8): 517-524. doi: 10.1080/15298668491400205 [36] YOON Y H, NELSON J H. Application of gas adsorption kinetics: I. A theoretical model for respirator cartridge service life[J]. American Industrial Hygiene Association Journal, 1984, 45(8): 509-551. doi: 10.1080/15298668491400197