-
近年来,与传统的化学计量发动机相比,柴油和其他贫燃汽油车辆因其更好的燃油效率和低CO2排放量而拥有广阔的发展前景[1],但三效催化剂对NOx的催化还原效果较差[2]。随着氮氧化物排放造成的环境污染问题的日趋严重,在未来几年,交通运输部门对氮氧化物排放的监管也将更为严格。因此,有必要开发能够在柴油和其他贫燃汽油车辆的发动机处理系统之后还原NOx的催化系统[3]。为了解决这个问题,许多学者研究了NSR(NOx储存还原)技术及以NH3或烃为还原剂的NH3-SCR和HC-SCR催化体系[1]。HC-SCR因其不必通过外部加入还原剂而引起人们的广泛关注[2],并且已有研究证明HC-SCR是一种有效且经济的技术[4]。研究表明,TiO2不仅在光催化领域效果显著,在SCR应用中也是一种优良的催化剂载体[5]。TiO2具有强抗硫中毒能力、高比表面积[6]、低毒性和价格低廉的优势[7]。同时Ce基材料可以用作三效催化剂的重要组分,它们能够储存和释放氧气,进而起到促进CO和NO转化的作用[8]。王淑勤等[9]以TiO2为载体,负载Ce和Co元素,研究其脱硝性能,发现与纯TiO2相比,其效率提高了近50%。JIN等[10]将Mn-Ce活性组分负载在TiO2和Al2O3载体上,发现在80~150 ℃,Mn-Ce/TiO2的脱氮活性高于Mn-Ce/Al2O3。此外,杂多酸(HPAs)因具有假液相特性、强氧化还原能力、活泼的晶格氧、强质子酸性、无毒和非挥发性的特点而引起关注[11]。研究[12]表明,极性分子(如NO、NH3、吡啶)等可以进入HPAs内部,从而引发HPAs表面和内部反应。实验发现,NOx的去除率与杂多酸的酸度密切相关,杂多酸的酸性越强,去除率越高。其中HPW酸性最强,具有最高的NOx去除率。在HPW的各种结构中,已有研究探讨了Keggin型H3PW12O40的物理化学和催化性质,并且已经证明它是一种可以用于均相或非均相的有效超级酸[12]。但是在实际应用中,纯杂多酸也存在很多缺点,如比表面积小(<10 m2·g−1)、热稳定性低、机械强度差、在极性溶剂中溶解且难以回收,因此,应将其负载到载体上来克服这些缺点[13]。目前,负载磷钨酸的主要载体有活性炭、SiO2、TiO2、MCM-41、分子筛等中性载体[14]。
本研究采用浸渍法制备了TiO2、Ce-TiO2和Ce与H3PW12O40(HPW)共掺杂TiO2 3种催化剂,模拟烟气进行脱硝活性测试,使用X射线衍射(XRD)、傅里叶变换红外(FTIR)和扫描电镜(SEM)对制备的催化剂进行表征测试,同时进行了原位傅里叶变换红外光谱实验,阐明HPW和Ce在SCR反应中的作用,推测其可能的反应机理,为进一步深入研究烃类选择性催化还原NO反应机理提供参考。
Ce-HPW-TiO2催化剂利用C3H6选择性催化还原NO反应的机理
Mechanism of C3H6 selective catalytic reduction reaction of NO by Ce-HPW-TiO2 catalyst
-
摘要: 为提高C3H6-SCR脱硝催化剂的低温脱硝性能,采用浸渍法合成了几种由铈和Keggin型磷钨酸改性的TiO2催化剂。在模拟烟气的实验条件下,考察了不同催化剂在150~350 ℃的脱硝活性,通过XRD、FT-IR和SEM对催化剂的理化性质进行了分析,并且通过原位FT-IR探究并对比了不同催化剂在吸附NO和C3H6时产生的吸附物种。结果表明:铈和磷钨酸的共掺杂大大提高了TiO2催化剂在中低温区的脱硝效率;Ce和H3PW12O40(HPW)成功负载于TiO2上,负载的HPW也保留了其Keggin结构,而且负载后的催化剂表面更加光滑,形态更加规则,分散性更好;原位FT-IR结果显示:Ce和HPW的掺杂可以促进催化剂表面硝酸盐物质和丙烯吸附物种的形成;同时发现无论是在预吸附NO还是在预吸附C3H6的情况下,Ce-HPW-TiO2(CM)催化剂表面发生的反应活性最高。由此提出了Ce-HPW-TiO2(CM)催化剂的反应机理,发现其反应中间体主要为无机硝酸盐、甲酸盐、乙酸盐和有机氮化合物。Abstract: In order to improve the low-temperature denitration performance of C3H6-SCR denitration catalyst, several modified TiO2 catalysts with ceria and Keggin-type tungstophosphoric acid were synthesized by impregnation method. Under the experimental conditions of simulated flue gas, the denitrification activities of different catalysts at 150~350 ℃ was investigated. The physicochemical properties of these catalysts were analyzed by XRD, FT-IR and SEM. In situ FT-IR was used to investigate and compare the adsorbed species produced on different catalysts when they absorbed NO and C3H6. The results showed that the co-doping of cerium and phosphotungstic acid greatly improved the denitration efficiency of TiO2 catalyst in the middle and low temperature regions. Ce and H3PW12O40(HPW) were successfully supported on TiO2, and the supported HPW also retained its Keggin structure, and the catalysts after loading had more smooth surface, more regular shape, and better dispersion. The in situ FTIR spectra showed that the doping of Ce and HPW could promote the formation of nitrate and propylene adsorbed species on the surface of catalysts. At the same time, the surface of Ce-HPW-TiO2(CM) catalyst had the highest reactivity whether it was pre-adsorbed with NO or C3H6. Therefore, the reaction mechanism of Ce-HPW-TiO2(CM) catalyst was proposed, and the reaction intermediates were mainly inorganic nitrate, formate, acetate and organic nitrogen compounds.
-
Key words:
- phosphotungstic acid /
- NO reduction /
- C3H6-SCR /
- in situ FT-IR /
- mechanism
-
-
[1] MRAD R, COUSIN R, POUPIN C, et al. Propene oxidation and NO reduction over MgCu-Al(Fe) mixed oxides derived from hydrotalcite-like compounds[J]. Catalysis Today, 2015, 257: 98-103. doi: 10.1016/j.cattod.2015.02.020 [2] YUAN D L, LI X Y, ZHAO Q D, et al. A novel CuTi-containing catalyst derived from hydrotalcite-like compounds for selective catalytic reduction of NO with C3H6 under lean-burn conditions[J]. Journal of Catalysis, 2014, 309: 268-279. doi: 10.1016/j.jcat.2013.09.010 [3] AZIS M M, HÄRELIND H, CREASER D. On the role of H2 to modify surface NOx species over Ag-Al2O3 as lean NOx reduction catalyst: TPD and DRIFTS studies[J]. Catalysis Science & Technology, 2014, 5: 296-309. [4] 刘欣, 苏亚欣, 董士林, 等. Co/Fe/Al2O3/cordierite催化C3H6选择性还原NO的实验研究[J]. 燃料化学学报, 2018, 46(6): 743-753. doi: 10.3969/j.issn.0253-2409.2018.06.013 [5] KIM Y J, KWON H J, NAM I S, et al. High deNOx performance of Mn/TiO2 catalyst by NH3[J]. Catalysis Today, 2010, 151(3/4): 244-250. [6] PUTLURU S S R, MOSSIN S, RIISAGER A, et al. Heteropoly acid promoted Cu and Fe catalysts for the selective catalytic reduction of NO with ammonia[J]. Catalysis Today, 2011, 176(1): 292-297. doi: 10.1016/j.cattod.2010.11.087 [7] YAO S H, CHEN S, SHI Z L. Preparation and photocatalytic activity of Ce, H3PW12O40 co-doped TiO2 hollow fibers[J]. Chinese Journal of Chemical Physics, 2014, 27: 343-349. doi: 10.1063/1674-0068/27/03/343-349 [8] LIU J, LI X Y, ZHAO Q D, et al. Combined spectroscopic and theoretical approach to sulfur-poisoning on Cu-supported Ti-Zr mixed oxide catalyst in the selective catalytic reduction of NOx[J]. ACS Catalysis, 2014, 4(8): 2426-2436. doi: 10.1021/cs5005739 [9] 王淑勤, 武金锦, 杜志辉. Co-Ce共掺杂对TiO2催化剂室温可见光催化脱硝性能的影响[J]. 燃料化学学报, 2019, 47(3): 361-369. [10] JIN R B, LIU Y, WU Z B, et al. Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3: A comparative study[J]. Chemosphere, 2010, 78(9): 1160-1166. doi: 10.1016/j.chemosphere.2009.11.049 [11] 宋忠贤. 固体酸改性CeO2催化剂的制备及其NH3-SCR机理研究[D]. 昆明: 昆明理工大学, 2017. [12] WENG X L, DAI X X, ZENG Q S, et al. DRIFT studies on promotion mechanism of H3PW12O40 in selective catalytic reduction of NO with NH3[J]. Journal of Colloid and Interface Science, 2016, 461: 9-14. doi: 10.1016/j.jcis.2015.09.004 [13] 宋淑美, 王睿. 具有低温活性的高效脱硝催化体系研究进展[J]. 现代化工, 2007, 27(s1): 108-112. [14] GÓMEZ-GARCÍA M A, PITCHON V, KIENNEMANN A, et al. Sorption-desorption of NOx from a lean gas mixture on H3PW12O40·6H2O supported on carbon nanotubes[J]. Topics in Catalysis, 2004, 30-31(1/2/3/4): 229-233. [15] PALACIO M, VILLABRILLE P I, ROMANELLI G P, et al. Ecofriendly liquid phase oxidation with hydrogen peroxide of 2,6-dimethylphenol to 2,6-dimethyl-1,4-benzoquinone catalyzed by TiO2-CeO2 mixed xerogels[J]. Applied Catalysis A: General, 2009, 359(1/2): 62-68. [16] XUE W L, ZHANG G W, XU X F, et al. Preparation of titania nanotubes doped with cerium and their photocatalytic activity for glyphosate[J]. Chemical Engineering Journal, 2011, 167(1): 397-402. doi: 10.1016/j.cej.2011.01.007 [17] WANG Y J, CUI Y X, SUO Y H, et al. Influences of cerium on structure and catalytic performance of n-heptane hydroisomerization of Ni-HPW/MCM-48[J]. Journal of Rare Earths, 2015, 33(1): 46-55. doi: 10.1016/S1002-0721(14)60382-3 [18] MICEK-ILNICKA A, BIELAŃSKA E, LITYŃSKA-DOBRZYŃSKA L, et al. Carbon nanotubes, silica and titania supported heteropolyacid H3PW12O40 as the catalyst for ethanol conversion[J]. Applied Catalysis A: General, 2012, 421-422: 91-98. doi: 10.1016/j.apcata.2012.02.001 [19] REN Z Y, TENG Y F, ZHAO L Y, et al. Keggin-tungstophosphoric acid decorated Fe2O3 nanoring as a new catalyst for selective catalytic reduction of NOx with ammonia[J]. Catalysis Today, 2017, 297: 36-45. doi: 10.1016/j.cattod.2017.06.036 [20] CHANSAI S, BURCH R, HARDACRE C, et al. The use of short time-on-stream in situ spectroscopic transient kinetic isotope techniques to investigate the mechanism of hydrocarbon selective catalytic reduction (HC-SCR) of NOx at low temperatures[J]. Journal of Catalysis, 2016, 281(1): 98-105. [21] GENG Y, XIONG S C, LI B, et al. H3PW12O40 grafted on CeO2: A high-performance catalyst for the selective catalytic reduction of NOx with NH3[J]. Industrial & Engineering Chemistry Research, 2018, 57(3): 856-866. [22] GUNNARSSON F, PIHL J A, TOOPS T J, et al. Lean NOx reduction over Ag/alumina catalysts via ethanol-SCR using ethanol/gasoline blends[J]. Applied Catalysis B: Environmental, 2017, 202: 42-50. doi: 10.1016/j.apcatb.2016.09.009 [23] GUO R T, LI M Y, SUN P, et al. Mechanistic investigation of the promotion effect of Bi modification on the NH3-SCR performance of Ce/TiO2 catalyst[J]. Journal of Physical Chemistry C, 2017, 121(49): 27535-27545. doi: 10.1021/acs.jpcc.7b10342 [24] JIANG H X, WANG Q Y, WANG H Q, et al. MOF-74 as an efficient catalyst for the low-temperature selective catalytic reduction of NOx with NH3[J]. ACS Applied Materials & Interfaces, 2016, 8(40): 26817-26826. [25] ZHA K W, CAI S X, HU H, et al. In situ DRIFTs investigation of promotional effects of tungsten on MnOx-CeO2/meso-TiO2 catalysts for NOx reduction[J]. Journal of Physical Chemistry C, 2017, 121(45): 25243-25254. doi: 10.1021/acs.jpcc.7b08600 [26] ZHANG Q L, FAN J, NING P, et al. In situ DRIFTS investigation of NH3-SCR reaction over CeO2/zirconium phosphate catalyst[J]. Applied Surface Science, 2018, 435: 1037-1045. doi: 10.1016/j.apsusc.2017.11.180 [27] HADJIIVANOV K. Identification of neutral and charged NxOy surface species by IR spectroscopy[J]. Catalysis Reviews: Science and Engineering, 2000, 42(1/2): 71-144. [28] KRISTIANSEN T, MATHISEN K. On the promoting effect of water during NOx removal over single-site copper in hydrophobic silica APD-aerogels[J]. Journal of Physical Chemistry C, 2014, 118(5): 2439-2453. doi: 10.1021/jp406610v [29] SHIMIZU K, SATSUMA A. Selective catalytic reduction of NO over supported silver catalysts-practical and mechanistic aspects[J]. Physical Chemistry Chemical Physics, 2006, 8(23): 2677-2695. doi: 10.1039/B601794K [30] SOBCZAK I, MUSIALSKA K, PAWLOWSKI H, et al. NO and C3H6 adsorption and coadsorption in oxygen excess: A comparative study of different type zeolites modified with gold[J]. Catalysis Today, 2011, 176(1): 393-398. doi: 10.1016/j.cattod.2010.11.028 [31] XU G Y, YU Y B, HE H. Silver valence state determines the water tolerance of Ag/Al2O3 for the H2-C3H6-SCR of NOx[J]. Journal of Physical Chemistry C, 2018, 122(1): 670-680. doi: 10.1021/acs.jpcc.7b10860 [32] YU Y B, HE H, ZHANG X L, et al. A common feature of H2-assisted HC-SCR over Ag/Al2O3[J]. Catalysis Science & Technology, 2014, 4(5): 1239-1245. [33] KAMEOKA S, KITA K, TANAKA S I, et al. Enhancement of C2H6 oxidation by O2 in the presence of N2O over Fe ion-exchanged BEA zeolite catalyst[J]. Catalysis Letters, 2002, 79(1/2/3/4): 63-67. [34] HAMADA S, HIBARINO S, IKEUE K, et al. Preparation of supported Pt-M catalysts (M=Mo and W) from anion-exchanged hydrotalcites and their catalytic activity for low temperature NO-H2-O2 reaction[J]. Applied Catalysis B: Environmental, 2007, 74(3/4): 197-202. [35] LI Y H, DENG J L, SONG W Y, et al. Nature of Cu species in Cu-SAPO-18 catalyst for NH3-SCR: combination of experiments and DFT calculations[J]. Journal of Physical Chemistry C, 2016, 120(27): 14669-14680. doi: 10.1021/acs.jpcc.6b03464