-
榨菜的工业生产过程中常伴随着大量高盐有机废水的排放,此类高盐有机废水对常规微生物的生长繁殖等活动有明显的抑制作用[1],因而常规的处理技术并不能完成高效处理,并且常规处理技术能耗和运行费用高、污泥产量大,污泥的后续治理费用也较高[2]。近年来,微生物燃料电池因具有工作条件温和、底物来源广泛等优点,且在降解污染物的同时能实现能量的资源化回收,故已成为一种真正绿色、可持续产能装置[3-4]并获得普遍关注,现已应用于生活废水、焦化废水、养猪废水、垃圾渗滤液等多种废水的资源化处理[5-10]。
榨菜废水高盐的环境可以提供良好的电导率和可生化性,这些优势使其具备了作为MFCs理想燃料的条件[11]。基于此,GUO等[12]首次运用MFCs技术处理榨菜废水,同步实现了榨菜废水微生物燃料电池的产电和化学需氧量(chemical oxygen demand,COD)去除。之后,研究人员在盐度、产电周期等方面开展了一些研究工作[11, 13-15]。
由于榨菜废水微生物燃料电池存在输出功率不高的问题,考虑到阴极电子受体对电池系统的产电性能影响较大[16],为了提高榨菜废水MFCs的输出功率,故选择合适的电子受体至关重要。为此,有研究人员[17-19]对微生物燃料电池阴极的电子受体和产电性能展开了研究,以期提高阴极性能和MFCs整体输出功率。JADHAVA等[17]以次氯酸盐和氧气为阴极电子受体研究黏土微生物燃料电池时发现,次氯酸钠的功率密度为氧气的9倍。GHADGE等[18]以次氯酸盐为微生物燃料电池电子受体以提高污泥消化速率。JUN等[19]以过硫酸钾、铁氰化钾为阴极电子受体作对比实验发现,过硫酸钾的功率密度要高于铁氰化钾,且过硫酸钾作为阴极电子受体时具有调节pH的能力。这些研究的进水水质大多为人工配置的废水,而非实际废水(如榨菜废水)。实际废水(如榨菜废水)的水质更为复杂,相关的研究不多。然而,从燃料电池实际应用出发,应对实际废水进行研究。且电子受体对高盐榨菜废水MFCs的产电性能和阳极微生物菌群分布方面的研究尚未见报道。为探究上述问题,本实验以高盐榨菜废水为双室微生物燃料电池底物,选用过硫酸钾、氧气和铁氰化钾等常见的氧化还原能力具有差异的氧化剂作为电子受体(三者的氧化还原电位如式(1)~式(3)所示),比较其产电性能和阳极微生物菌群,以期对后续高盐榨菜废水的研究提供参考。
高盐废水MFCs不同阴极电子受体产电及微生物群落分析
Electricity generation and microbial community analysis of different cathodic electron acceptors in MFC treating mustard tuber wastewater
-
摘要: 为探查不同电子受体产电性能及对阳极微生物群落的影响,研究了3种电子受体(铁氰化钾、曝气阴极、过硫酸钾),构建了双室榨菜废水微生物燃料电池系统(microbial fuel cells,MFCs),实现了污水处理和能量回收的双重目的,探讨了不同电子受体(铁氰化钾、曝气阴极、过硫酸钾)对榨菜废水MFCs产电性能及阳极微生物群落的影响。结果表明:在产电性能方面,当过硫酸钾作为阴极电子受体时,电池输出电压、库仑效率、功率密度均优于另外2种常用阴极电子受体(铁氰化钾和氧气);在500 Ω的外接电阻间歇运行的条件下,其输出电压、库仑效率、功率密度分别为802 mV、(33±1.6)%、697 mW·m−2。阳极生物16S rRNA基因测序分析表明,水解发酵菌为榨菜废水微生物燃料电池阳极核心菌群,铁氰化钾、氧气和过硫酸钾MFCs阳极微生物菌群相对丰度分别为64.3%、63.6%和75.51%,包括Lentimicrobium、Synergistaceae、Sphaerochaeta、Anaerolineaceae、Draconibacteriacea菌属。阴极电子受体不同的MFCs的阳极微生物群落核心菌群类似,但是丰度有所不同。势差较大的电子受体(过硫酸钾)微生物群落多样性和丰富度较高,产电和污染物去除效果较好。
-
关键词:
- 微生物燃料电池 /
- 榨菜废水 /
- 电子受体 /
- 16S rRNA微生物分析
Abstract: In order to explore the relationship between the electrical properties of different electron acceptors and the anodic microbial community, three electron acceptors (potassium ferricyanide, aerated cathode, potassium persulfate) were experimentally studied. The microbial fuel cells (MFCs) of double-chamber mustard wastewater were constructed to achieve the dual purpose of sewage treatment and energy recovery. Effects of different electron acceptors (potassium ferricyanide, aerated cathode and potassium persulfate) on their electricity production performance and anode microbial community in mustard tuber wastewater were investigated. Results show that when potassium persulfate was used as the cathode electron acceptor, electricity production performance, such as the battery output voltage, coulombic efficiency and power density, was better than the other two common cathode electron acceptors (potassium ferricyanide and oxygen). Under the intermittent operation conditions with 500 Ω external resistors, the output voltage, coulombic efficiency, and power density were 802 mV, (33±1.6)% and 697 mW·m−2, respectively. The 16S rRNA gene sequencing analysis of the anode organism showed that the hydrolysis fermentation bacteria were the anode core bacteria of MFC treating mustard tuber wastewater, which accounted for 64.3%, 63.6%and 75.51% in the microbial flora of potassium ferricyanide, oxygen and potassium persulfate MFCs, respectively, and included Lentimicrobium, Synergistaceae, Sphaerochaeta, Anaerolineaceae, Draconibacteriacea. MFCs with different cathode electron acceptors had similar core bacteria of anode microflora, but had different abundance. The electron acceptor (potassium persulfate) with large potential difference caused higher diversity and richness of microbial community, and had better performance on electricity generation and pollutant removal than other electron acceptors. -
表 1 阳极生物膜的微生物多样性
Table 1. Microbial diversity of anode biofilm
电子受体类别 多样性指标 丰富度指标 覆盖率 Shannon指数 Simpson指数 OTU/个 Ace指数 Chao指数 铁氰化钾 3.75 0.072 0 355 396 406 0.988 过硫酸钾 4.53 0.003 1 483 525 535 0.998 氧气 4.41 0.005 4 471 484 483 0.990 -
[1] ZHAO Y, PARK H D, PARK J H, et al. Effect of different salinity adaptation on the performance and microbial community in a sequencing batch reactor[J]. Bioresource Technology, 2016, 216: 808-816. doi: 10.1016/j.biortech.2016.06.032 [2] CHAI H X, KANG W. Influence of biofilm density on anaerobic sequencing batch biofilm reactor treating mustard tuber wastewater[J]. Applied Biochemistry and Biotechnology, 2012, 168(6): 1664-1671. doi: 10.1007/s12010-012-9887-1 [3] 吴义诚, 王泽杰, 刘利丹, 等. 利用光微生物燃料电池实现养猪废水资源化利用研究[J]. 环境科学学报, 2015, 35(2): 456-460. [4] 刘斌, 尚均顶, 王许云. 微生物燃料电池构型研究进展[J]. 当代化工, 2018, 47(10): 2173-2177. doi: 10.3969/j.issn.1671-0460.2018.10.047 [5] 周亚, 彭新红, 阮国岭, 等. 微生物燃料电池阳极材料修饰研究进展[J]. 水处理技术, 2017, 43(3): 9-13. [6] 冯雅丽, 于莲, 李浩然, 等. 微生物燃料电池降解焦化废水过程研究[J]. 中国环境科学, 2018, 38(11): 4099-4105. doi: 10.3969/j.issn.1000-6923.2018.11.014 [7] 谢淼, 徐龙君, 程李钰. 处理过的老龄垃圾渗滤液为阴极液的微生物燃料电池性能研究[J]. 太阳能学报, 2018, 39(9): 2641-2647. [8] 程鹏, 袁浩然, 邓丽芳, 等. 基于广州市政垃圾渗滤液的MFC性能及阳极微生物分析[J]. 新能源进展, 2018, 6(5): 371-378. doi: 10.3969/j.issn.2095-560X.2018.05.006 [9] 倪红军, 卓露, 吕帅帅, 等. 运行因素对猪场废水微生物燃料电池产电性能的影响[J]. 现代化工, 2018, 38(11): 136-139. [10] 蒋沁芮, 李泽华, 杨暖, 等. 三维电极微生物燃料电池处理生活污水同步产电性能[J]. 应用与环境生物学报, 2018, 24(4): 873-878. [11] 付国楷, 吴越, 张林防, 等. 微生物燃料电池在高盐榨菜废水处理中的产电性能[J]. 环境工程学报, 2017, 11(4): 348-352. [12] GUO F, FU G K, ZHANG Z, et al. Mustard tuber wastewater treatment and simultaneous electricity generation using microbial fuel cells[J]. Bioresource Technology, 2013, 136: 425-430. doi: 10.1016/j.biortech.2013.02.116 [13] 付国楷, 张林防, 郭飞, 等. 榨菜废水MFC多周期运行产电性能及COD降解[J]. 中国环境科学, 2017, 37(4): 1401-1407. doi: 10.3969/j.issn.1000-6923.2017.04.026 [14] ZHANG L F, FU G K, ZHANG Z. Electricity generation and microbial community in long-running microbial fuel cell for high-salinity mustard tuber wastewater treatment[J]. Bioresource Electrochemistry, 2019, 126: 20-28. [15] ZHANG L F, FU G K, ZHANG Z. Simultaneous nutrient and carbon removal and electricity generation in self-buffered biocathode microbial fuel cell for high-salinity mustard tuber wastewater treatment[J]. Bioresource Technology, 2019, 272: 105-113. doi: 10.1016/j.biortech.2018.10.012 [16] 刘远峰, 孙伟, 宫磊. 电子受体对微生物燃料电池产电性能的影响[J]. 环境污染与防治, 2016, 38(11): 84-89. [17] JADHAVA D A, GHADGE A N, DEBIKA M, et al. Comparison of oxygen and hypochlorite as cathodic electron acceptor in microbial fuel cells[J]. Bioresource Technology, 2014, 154: 330-335. doi: 10.1016/j.biortech.2013.12.069 [18] GHADGE A N, JADHAV D A, PRADHAN H, et al. Enhancing waste activated sludge digestion and power production using hypochlorite as catholyte in clayware microbial fuel cell[J]. Bioresource Technology, 2015, 182: 225-231. doi: 10.1016/j.biortech.2015.02.004 [19] JUN L, QIAN F, QIANG L, et al. Persulfate a self-activated cathodic electron acceptor for microbial fuel cells[J]. Journal of Power Sources, 2009, 194: 269-274. doi: 10.1016/j.jpowsour.2009.04.055 [20] MIYAHARA M, KOUZUMA A, WATANABE K. Effects of NaCl concentration on anode microbes in microbial fuel cells[J]. AMB Express, 2015, 5(1): 1-9. doi: 10.1186/s13568-014-0092-1 [21] 吴越. 微生物燃料电池处理榨菜废水及甜菜碱影响研究[D]. 重庆: 重庆大学, 2016. [22] 杨瑞丽, 王晓君, 吴俊斌, 等. 厌氧氨氧化工艺快速启动策略及其微生物特性[J]. 环境工程学报, 2018, 12(12): 3341-3350. [23] DING A, ZHAN D, DING F, et al. Effect of inocula on performance of bio-cathode denitrification and its microbial mechanism[J]. Chemical Engineering, 2018, 343: 399-407. doi: 10.1016/j.cej.2018.02.119 [24] WU Y, HAN R, YANG X, et al. Correlating microbial community with physicochemical indices and structures of a full-scale integrated constructed wetland system[J]. Applied Microbiology & Biotechnology, 2016, 100(15): 6917-6926. [25] 陆玉, 钟慧, 丑三涛, 等. 乙酸驯化对厌氧污泥微生物群落结构及发酵特性的影响[J]. 环境科学学报, 2018, 38(5): 1835-1842. [26] RÓZSENBERSZKI T, KOÓK L, HUTVÁGNER D, et al. Comparison of anaerobic degradation processes for bioenergy generation from liquid fraction of pressed solid waste[J]. Waste and Biomass Valorization, 2015, 6(4): 465-473. doi: 10.1007/s12649-015-9379-y [27] DHIMAN S S, SHRESTHA N, DAVID A, et al. Producing methane, methanol and electricity from organic waste of fermentation reaction using novel microbes[J]. Bioresource Technology, 2018, 258: 270-278. doi: 10.1016/j.biortech.2018.02.128 [28] ZHEN G, KOBAYASHI T, LU X, et al. Biomethane recovery from egeria densa in a microbial electrolysis cell-assisted anaerobic system: Performance and stability assessment[J]. Chemosphere, 2016, 149: 121-129. doi: 10.1016/j.chemosphere.2016.01.101 [29] RÓZSENBERSZKI T, KOÓK L, BAKONYI P, et al. Municipal waste liquor treatment via bioelectrochemical and fermentation (H2+CH4) processes: Assessment of various technological sequences[J]. Chemosphere, 2017, 171: 692-701. doi: 10.1016/j.chemosphere.2016.12.114 [30] ROSENBAUM M A, BAR HY, BEG Q K, et al. Transcriptional analysis of shewanella oneidensis Mr-1 with an electrode compared to Fe (Ⅲ) citrate or oxygen as terminal electron acceptor[J]. Plos One, 2012, 7(2): 1-13. [31] PENG L, YOU S, WANG J. Electrode potential regulates cytochrome accumulation on Shewanella oneidensis cell surface and the consequence to bioelectrocatalytic current generation[J]. Biosensors and Bioelectronics, 2010, 25(11): 2530-2533. doi: 10.1016/j.bios.2010.03.039 [32] BUSALMEN J P, ESTEVE N A, FELIU J M. Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport[J]. Environmental Science & Technology, 2008, 42(7): 2445-2450. [33] TERAVEST M A, ANGENENT L T. Oxidizing electrode potentials decrease current production and coulombic efficiency through cytochrome c inactivation in Shewanella oneidensis Mr-1[J]. Chemelectrochem, 2014, 1(11): 2000-2006. doi: 10.1002/celc.v1.11 [34] GROBBLER C, VIRDIS B, NOUWENS A, et al. Effect of the anode potential on the physiology and proteome of Shewanella oneidensis Mr-1[J]. Bioelectrochemistry, 2018, 201: 172-179. [35] CARMONA M, HARNISCH F, KUHLICKE U, et al. Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential[J]. Bioelectrochemistry, 2013, 93: 23-29. doi: 10.1016/j.bioelechem.2012.05.002 [36] SUN L, TOYONAGA M, OHASHI A, et al. Lentimicrobium saccharophilum gen. nov., sp. nov., a strictly anaerobic bacterium representing a new family in the phylum Bacteroidetes, and proposal of Lentimicrobiaceae fam. Nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66: 2635-2642. doi: 10.1099/ijsem.0.001103 [37] RAGO L, ZECCHIN S, MARZORATI S, et al. A study of microbial communities on terracotta separator and on biocathode of air breathing microbial fuel cells[J]. Bioelectrochemistry, 2018, 120: 18-26. doi: 10.1016/j.bioelechem.2017.11.005 [38] 周蕾. 厌氧烃降解产甲烷菌系的组成及其代谢产物的特征[D]. 上海: 华东理工大学, 2012. [39] XIA Y, WANG Y, WANG Y, et al. Cellular adhesiveness and cellulolytic capacity in Anaerolineae revealed by omics-based genome interpretation[J]. Biotechnology for Biofuels, 2016, 9(1): 111. doi: 10.1186/s13068-016-0524-z [40] LIANG B, WANG L Y, MBADINGA S M, et al. Anaerolineaceae and Methanosaeta turne to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation[J]. AMB Express, 2015, 5: 37. doi: 10.1186/s13568-015-0117-4 [41] LIU Y, LAI Q, DU J, et al. Thioclava indica sp. nov., isolated from surface seawater of the Indian Ocean[J]. Antonie Van Leeuwenhoek, 2015, 107(1): 297-304. doi: 10.1007/s10482-014-0320-3 [42] DU Z J, WANG Y, DUNlAP C, et al. Draconibacterium orientale gen. nov., sp. nov., isolated from two distinct marine environments, and proposal of Draconibacteriaceae fam. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64: 1690-1696. doi: 10.1099/ijs.0.056812-0 [43] CHENG C, ZHOU Z, QIU Z, et al. Enhancement of sludge reduction by ultrasonic pretreatment and packing carriers in the anaerobic side-stream reactor: Performance, sludge characteristics and microbial community structure[J]. Bioresource Technology, 2018, 249: 298-306. doi: 10.1016/j.biortech.2017.10.043 [44] TROSHINA O, VIKTORIA O, NZTALIA S, et al. Sphaerochaeta associata sp. nov., a spherical spirochaete isolated from cultures of Methanosarcina mazei JL01[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65: 4315-4322. doi: 10.1099/ijsem.0.000575 [45] LOGAN B E. Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments[J]. Chemsuschem, 2012, 5(6): 988-994. doi: 10.1002/cssc.v5.6 [46] DAI X, HU C, ZHANG D, et al. Impact of a high ammonia-ammonium-pH system on methane-producing archaea and sulfate-reducing bacteria in mesophilic anaerobic digestion[J]. Bioresource Technology, 2017, 245: 598-605. doi: 10.1016/j.biortech.2017.08.208