-
伴随着我国工业化进程的加快和社会经济的迅速发展,产生了大量含有难降解和具生物毒性的典型污染物的工业废水,其中包括:印染、造纸、海水利用等众多工业领域产生的浓度越来越高的含盐废水[1];制革工业产生的重金属污染种类排名第2的含铬废水[2];生产四环类抗生素的制药厂所产生的含四环素废水[3]。污水处理厂的设计本身不具备处理这类污染物的能力,此类工业废水进入城镇污水处理系统后,势必会对生物脱氮系统带来负面影响[4-5]。
目前,工业废水中一些典型污染物对反硝化过程的影响的相关研究已经取得了一定的进展。YU等[6]在研究苯酚胁迫对高硝酸盐厌氧反硝化的影响中提到,一定浓度的苯酚会减少硝酸盐的去除率,积累亚硝酸盐,增加微生物群落的多样性和丰富度;FENG等[7]研究了锌、铜、铅、镉等重金属对膜生物反应器硝化反硝化性能的影响,发现微生物在低浓度或高浓度重金属处理后反硝化率降低显著,可减小污泥颗粒粒径并增加胞外聚合物;GUI等[8-9]研究发现,盐度和重金属均会抑制好氧反硝化细菌去除硝酸盐氮,盐度和重金属会影响反硝化功能基因的表达。据报道,某些从天然环境如河床[10]、海域[11]、活性污泥[12]中筛选得到的好氧反硝化细菌不仅具有高效好氧反硝化能力,还具备良好的耐盐耐重金属或耐低温特性,反硝化过程基本不受污染物的影响。
好氧反硝化技术为实现同步硝化反硝化提供了良好的基础,部分好氧反硝化细菌甚至可以耐受污染物的生物毒性,在接纳工业废水的城镇污水厂的生物脱氮系统中具有极大的应用潜力。但目前污染物抑制好氧反硝化作用的研究多集中于反硝化率和相关基因表达的影响方面,对污染物长期胁迫下细胞胞外多聚物,尤其是微生物群落结构的变化等方面的研究相对较少。本研究以活性污泥作为接种源,富集筛选好氧反硝化菌群,持续投加氯化钠、六价铬、盐酸四环素(tetracycline hydrochloride,TC),对富集菌群进行驯化,最后比较了驯化前后菌群微生物的反硝化速率、EPS含量、群落多样性以及napA基因丰度,以揭示典型工业污染物对好氧反硝化菌群的影响。
典型工业污染物对好氧反硝化菌群脱氮性能及群落结构的影响
Effects of typical industrial pollutants on the denitrification performance and the community structure of aerobic denitrifying bacteria
-
摘要: 针对工业废水中的典型污染物影响城镇污水生物脱氮系统正常运行的问题,以富集筛选到的好氧反硝化菌群为研究对象,深入研究了工业废水中的典型污染物(包括NaCl、Cr(Ⅵ)和TC等)对好氧反硝化菌群的影响机理。结果表明:NaCl、Cr(Ⅵ)和TC均会抑制好氧反硝化菌群的脱氮性能,提高胞外多聚物(EPS)的含量;与此同时,Cr(Ⅵ)和TC的胁迫导致微生物群落多样性减少,降低了napA基因的丰度,然而,NaCl的胁迫呈现相反的变化趋势;NaCl和Cr(Ⅵ)使得菌群中优势菌属由Pseudomonas向Azoarcus转变,反之,TC能够显著增加Pseudomonas的相对丰度,降低Thauera的相对丰度。工业废水中的典型污染物对好氧反硝化菌群的脱氮性能具有较显著的抑制作用,长期胁迫下菌群通过产生胞外多聚物和改变菌群结构来抵御污染物。研究结果对于接纳工业废水的城镇污水处理厂应用好氧反硝化技术进行生物脱氮具有指导和借鉴意义。
-
关键词:
- 工业污染物 /
- 好氧反硝化 /
- 脱氮性能 /
- 群落结构 /
- 胞外多聚物(EPS)
Abstract: The normal operation of biological nitrogen removal systems for urban sewage is affected by typical contaminants in industrial wastewater, while the biological nitrogen removal based on pollutant-tolerated aerobic denitrifying bacteria provides a solution to this toxic wastewater treatment. In this study, the effects of typical contaminants in industrial wastewater, i.e., sodium chloride, hexavalent chromium, and tetracycline hydrochloride on the denitrifying performance of the enriched aerobic denitrifying bacteria were investigated. The results showed that these contaminants apparently inhibited the denitrifying performance of aerobic denitrifying bacteria, and enhanced the EPS production. Meanwhile, the long-term stress from hexavalent chromium and tetracycline hydrochloride reduced the diversity of the microbial community and the abundance of napA gene, while the long-term stress from sodium chloride resulted in an opposite trends. The stress of sodium chloride and hexavalent chromium led to the transformation of the dominant genus from Pseudomonas to Azoarcus, but the stress of tetracycline hydrochloride could significantly improve the relative abundance of Pseudomonas, and reduce that of Thauera. Although the initial significant inhibitory effect by typical industrial contaminants on the performance of aerobic denitrifying bacteria occurred, these bacteria could produce extracellular polymers and change their microbial community structure to relieve this inhibitory effect under long-term stress conditions. The study can provide a reference for the practical application of aerobic denitrification technology for bio-denitrification in urban sewage treatment plants with admission of industrial wastewater. -
表 1 荧光定量PCR引物、序列及反应条件
Table 1. Primers, sequences and reaction conditions for fluorescent q-PCR
引物 序列 反应条件 napA Z3F CGCGAACAAGCTGATGAAGG 95 ℃预变性3 min; 95 ℃变性15 s, 57 ℃退火20 s, 72 ℃延伸30 s, 45个循环 napA Z3R AAGATCATCGGGATGTCGGC 95 ℃预变性3 min; 95 ℃变性15 s, 57 ℃退火20 s, 72 ℃延伸30 s, 45个循环 表 2 驯化前后反硝化速率
Table 2. Denitrification rates before and after acclimation
驯化
状态投加
抑制物MLVSS/
(g·L−1)反硝化速率(以VSS计)/
(mg·(g·h)−1)驯化前 空白 9.84 2.31 加NaCl 9.76 0.44 加Cr(Ⅵ) 9.41 1.43 加TC 9.93 0.52 驯化后 空白 7.18 9.37 加NaCl 8.4 7.95 加Cr(Ⅵ) 7.21 4.53 加TC 3.51 6.49 表 3 细菌群落α-多样性
Table 3. α-diversity of microbial community
处理组 OTU 深度指数 Chao1指数 Shannon多样性指数 Simpson多样性指数 接种污泥 413 0.999 1 419 6.31 0.965 富集菌群 142 0.998 7 170 3.76 0.849 空白 120 0.999 0 141 2.95 0.756 加NaCl 245 0.998 4 255 3.12 0.806 加Cr(Ⅵ) 76 0.999 4 88 2.20 0.531 加TC 68 0.999 6 75 2.21 0.591 -
[1] 陈浩, 张枫, 王中正, 等. 高盐废水处理技术研究进展[J]. 广州化工, 2017, 45(22): 17-18. doi: 10.3969/j.issn.1001-9677.2017.22.008 [2] 耿淑英, 付伟章, 郑书联, 等. 皮革厂含铬污泥铬回收及资源化利用[J]. 环境工程学报, 2017, 11(6): 3767-3772. [3] 张昱, 唐妹, 田哲, 等. 制药废水中抗生素的去除技术研究进展[J]. 环境工程学报, 2018, 12(1): 1-14. [4] 高欣, 马鹏飞. 工业废水对城市污水处理厂设计及运行的影响[J]. 环境科学与管理, 2006, 31(3): 72-73. doi: 10.3969/j.issn.1673-1212.2006.03.025 [5] 赵凯峰, 王淑莹, 叶柳, 等. NaCl盐度对耐盐活性污泥沉降性能及脱氮的影响[J]. 环境工程学报, 2010, 4(3): 570-574. [6] YU M, ZHU W, LIAO R H, et al. Assessment of phenol effect on microbial community structure and function in an anaerobic denitrifying process treating high concentration nitrate wastewater[J]. Chemical Engineering Journal, 2017, 330: 757-763. doi: 10.1016/j.cej.2017.08.011 [7] FENG B, FANG Z, HOU J, et al. Effects of heavy metal wastewater on the anoxic/aerobic-membrane bioreactor bioprocess and membrane fouling[J]. Bioresource Technology, 2013, 142(8): 32-38. [8] GUI M Y, CHEN Q, MA T, et al. Effects of heavy metals on aerobic denitrification by strain Pseudomonas stutzeri PCN-1[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1717-1727. doi: 10.1007/s00253-016-7984-8 [9] GUI M, CHEN Q, NI J. Effect of NaCl on aerobic denitrification by strain Achromobacter sp. GAD-3[J]. Applied Microbiology & Biotechnology, 2017, 101(12): 1-9. [10] 白洁, 陈琳, 黄潇, 等. 1株耐盐异养硝化-好氧反硝化菌Zobellella sp. B307的分离及脱氮特性[J]. 环境科学, 2018, 39(10): 4793-4801. [11] HE D, ZHENG M, MA T, et al. Interaction of Cr(VI) reduction and denitrification by strain Pseudomonas aeruginosa PCN-2 under aerobic conditions[J]. Bioresource Technology, 2015, 185(1): 346-352. [12] 魏荷芬, 王田野, 张宏才, 等. 一株多重耐受性高效反硝化细菌的分离鉴定及特性[J]. 环境工程学报, 2016, 10(12): 7367-7374. doi: 10.12030/j.cjee.201507080 [13] 龙腾锐, 李金印, 龙向宇, 等. 超声波提取活性污泥胞外聚合物的研究[J]. 环境化学, 2008, 27(3): 310-313. doi: 10.3321/j.issn:0254-6108.2008.03.007 [14] 王孝平, 邢树礼. 考马斯亮蓝法测定蛋白含量的研究[J]. 天津化工, 2009, 23(3): 40-42. doi: 10.3969/j.issn.1008-1267.2009.03.016 [15] 姜琼, 谢妤. 苯酚-硫酸法测定多糖方法的改进[J]. 江苏农业科学, 2013, 41(12): 316-318. doi: 10.3969/j.issn.1002-1302.2013.12.114 [16] ZHU L, DING W, FENG L J, et al. Isolation of aerobic denitrifiers and characterization for their potential application in the bioremediation of oligotrophic ecosystem[J]. Bioresource Technology, 2012, 108: 1-7. doi: 10.1016/j.biortech.2011.12.033 [17] THROBACK I N, ENWALL K, JARVIS A, et al. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE[J]. FEMS Microbiology Ecology, 2004, 49(3): 401-417. doi: 10.1016/j.femsec.2004.04.011 [18] 国家环境保护总局. 水质 硝酸盐氮的测定 紫外分光光度法(试行): HJ/T 346-2007[S]. 北京: 中国环境科学出版社, 2007. [19] 国家环境保护部. 水质 氨氮的测定 纳氏试剂分光光度法: HJ 535-2009[S]. 北京: 中国环境科学出版社, 2010. [20] 国家环境保护局. 水质 亚硝酸盐氮的测定 分光光度法: GB 7493-1987[S]. 北京: 中国标准出版社, 1987. [21] 国家环境保护局. 水质 六价铬的测定 二苯碳酰二肼分光光度法: GB/T 7467-1987[S]. 北京: 中国标准出版社, 1987. [22] 汪敏刚, 孙培德, 罗涛, 等. 低浓度铬对SBR中微生物抑制影响研究[J]. 环境科学学报, 2016, 36(6): 1979-1985. [23] 康福星, 龙健, 王倩, 等. 微生物胞外聚合物对水体重金属和富营养元素的环境生化效应研究展望[J]. 应用与环境生物学报, 2010, 16(1): 129-134. [24] 金淑芳, 张燚, 刘敏. 不同种类污泥中胞外多聚物的研究[J]. 四川化工, 2015, 18(4): 7-9. doi: 10.3969/j.issn.1672-4887.2015.04.003 [25] 王子超, 高孟春, 魏俊峰, 等. 盐度变化对厌氧污泥胞外聚合物的影响[J]. 环境科学学报, 2016, 36(9): 3273-3281. [26] 许睿骁, 李冰, 张勇, 等. 压力环境下活性污泥的耐盐驯化过程[J]. 环境工程学报, 2017, 11(7): 3952-3956. [27] 张恩华, 戴幼芬, 肖勇, 等. 还原Cr(Ⅵ)的混菌胞外聚合物和细菌群落结构分析[J]. 中国环境科学, 2017, 37(1): 352-357. [28] LIU C, XU J, LEE D J, et al. Denitrifying sulfide removal process on high-tetracycline wastewater[J]. Bioresource Technology, 2016, 205: 254-257. doi: 10.1016/j.biortech.2016.01.026 [29] HAMODA M F. Effects of high sodium chloride concentrations on activated sludge treatment[J]. Water Science & Technology, 1995, 31(9): 61-72. [30] FERNANDO M S, NIELSEN J L, NIELSEN P H. Substrate-dependent denitrification of abundant probe-defined denitrifying bacteria in activated sludge[J]. FEMS Microbiology Ecology, 2008, 66(2): 447-461. doi: 10.1111/fem.2008.66.issue-2 [31] ZHU I X, LIU J R. Nitrification and Denitrification: Introductory Chapter: Effects of Salinity on Biological Nitrate Removal from Industrial Wastewater[M/OL]. [2018-12-01]. https://www.intechopen.com/books/nitrification-and-denitrification/introductory-chapter-effects-of-salinity-on-biological-nitrate-removal-from-industrial-wastewater. [32] 马晓丹, 高灵芳, 谭文博, 等. 一株异养脱硫反硝化菌株的筛选及其生物脱硫脱氮特性研究[J]. 微生物学通报, 2015, 42(5): 853-857. [33] FINGER K A, RHINE E D, YOUNG L. Bacterial chromate reduction and degradation of aromatic compounds[C]//American Society for Microbiology. 102nd General Meeting of the American Society for Microbiology. Salt Lake City, UT, USA, 2002: 411. [34] YU M, LIAO R, ZHANG X X, et al. Metagenomic insights into Cr(VI) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater[J]. Water Research, 2015, 76: 43-52. doi: 10.1016/j.watres.2015.02.042 [35] ZOU Y, LIN M, XIONG W, et al. Metagenomic insights into the effect of oxytetracycline on microbial structures, functions and functional genes in sediment denitrification[J]. Ecotoxicology & Environmental Safety, 2018, 161: 85-91. [36] SUN M, YE M, LIU K, et al. Dynamic interplay between microbial denitrification and antibiotic resistance under enhanced anoxic denitrification condition in soil[J]. Environmental Pollution, 2017, 222: 583-591. doi: 10.1016/j.envpol.2016.10.015 [37] CHRISTINE M, FLORIAN M, RICHARD V, et al. Comparative analysis of denitrifying activities of hyphomicrobium nitrativorans, hyphomicrobium denitrificans, and hyphomicrobium zavarzinii[J]. Applied and Environmental Microbiology, 2015, 81(15): 5003-5014. doi: 10.1128/AEM.00848-15 [38] WASER M, HESS-BIENZ D, DAVIES K, et al. Cloning and disruption of a putative NaH-antiporter gene of Enterococcus hirae[J]. Journal of Biological Chemistry, 1992, 267(8): 5396-5400.