-
我国铝型材行业发展快速,随之产生的铝型材污泥亦逐年增多。经调查,2017年,全国新增铝型材污泥583.20×104 t·a−1,其中含铬的污泥占总量的10%~15%。2016年,《国家危险废物名录》将含铬的铝型材污泥归类为HW17危险废物。目前,含铬铝型材污泥尚未得到妥当处理处置,一般采用就地堆放、填埋等方式[1]。这给企业带来极大负担,也给环境带来了巨大风险[2-4]。
含铬铝型材污泥干基中含铝量均在50%(以Al2O3计)以上[5],污泥中Cr(Ⅲ)严重阻碍其铝资源开发利用。ZHANG等[6]和BAO等[7]以含铬铝泥为原料,通过酸(碱)溶再沉淀制备纳米材料,纳米材料掺杂较多Cr(Ⅲ)。污泥中Al(OH)3和Cr(OH)3化学性质相似,故难以利用酸碱溶解性差异进行分离。GEZER等[8]和陈巍等[9]利用氧化剂将污泥或废渣中Cr(Ⅲ)转化为Cr(Ⅵ)离子,可在不影响污泥含铝量的前提下,采用氧化方法分离出污泥中的铬。污泥中的Al(OH)3胶体物质会对分离Cr(Ⅵ)过程造成阻碍。在已有含Cr(Ⅵ)铝泥除铬的研究中,发现利用水洗或解胶剂可对铝泥中Cr(Ⅵ)进行有效分离[10-12]。因此,可利用氧化-解胶的方法有效地将Cr(Ⅲ)氧化成Cr(Ⅵ),并将其去除,达到分离污泥中铬金属的目的。
本研究以某铝型材企业产生的含Cr(Ⅲ)铝型材污泥为研究对象,采用次氯酸钠氧化-硫酸钠解胶联合法有效地氧化Cr(Ⅲ)并去除Cr(Ⅵ);通过分析污泥的基本性质,同时研究氧化条件、浸出规律以及分离机理,为含铬铝型材污泥的处理处置提供新的途径与参考。
氧化-解胶联合法分离含铬铝型材污泥中的铬铝金属
Separation of chromium and aluminum metals from chromium aluminum sludge by combination of oxidation and dispergator
-
摘要: 以广东某铝型材厂产生的含铬铝型材污泥为研究对象,在不影响污泥含铝量的前提下,采用次氯酸钠氧化-硫酸钠解胶联合法单独分离污泥中的Cr(Ⅲ)。结果表明:通过次氯酸钠氧化Cr(Ⅲ)并浸出Cr(Ⅵ),在最佳条件下,铬浸出率为46.47%;然后水洗1次滤渣,去除残留的可溶性Cr(Ⅵ),再以硫酸钠为解胶剂去除被滤渣吸附的酸溶性Cr(Ⅵ),在最佳条件下,水洗-解胶除铬率为63.64%;经联合法处理后,污泥含铬量为0.80 mg·g−1,总除铬率为80.50%,含铝量损失率仅为1.08%。氧化后的含Cr(Ⅵ)废水经氯化钡处理后可在工艺中回用。利用联合法处理含铬铝型材污泥所需成本比HW17危险废物的处置费用低。Abstract: In this study, chromium aluminum sludge produced by an aluminum profile factory in Guangdong was taken as the research object, and the combined method of sodium hypochlorite oxidation and sodium sulfate peptization was used to separate the Cr(Ⅲ) from the sludge without affecting the aluminum content of the sludge. The result showed that Cr(Ⅲ) oxidation and Cr(Ⅵ) leaching occurred after sodium hypochlorite treatment, and the leaching rate of chromium was 46.47% under the optimum conditions. Secondly, the residual soluble Cr(Ⅵ) was removed by washing the filter residue once, then the acid soluble Cr(Ⅵ) adsorbed on the filter residue was removed by sodium sulfate dispergator. Under the optimum conditions, the removal rate of chromium by water washing-dispergator reached 63.64%. After above combined treatment, the remaining chromium content of sludge was 0.80 mg·g−1, the total chromium removal rate was 80.50%, and the aluminum loss rate was only 1.08%. The oxidized Cr(Ⅵ) wastewater can be reused in the process after barium chloride treatment. The cost of treating chromium aluminum sludge by combined method was lower than that of HW17 hazardous waste disposal.
-
Key words:
- chromium aluminum sludge /
- sodium hypochlorite /
- chromium /
- dispergator
-
表 1 污泥样品主要成分分析结果
Table 1. Results of principal component analysis of sludge samples
Al2O3 Cr2O3 Fe2O3 CaO SiO2 SO3 烧失量 总量 64.03 0.60 0.21 2.60 3.03 16.47 12.07 99.01 表 2 氧化-解胶联合法对污泥的除铬效率
Table 2. Chromium removal efficiency of sludge by oxidation-dispergator
样品 样品颜色 含铬量/
(mg·g−1)含铝量/
(mg·g−1)总除铬率/% 原泥 灰白色 4.11 338.86 — 氧化后的滤渣 浅黄色 2.20 338.82 46.47 水洗-解胶滤渣 白色 0.80 335.20 80.54 表 3 工艺处理成本估算
Table 3. Cost estimation for the treatment process
耗材与能耗 使用量/kg 单价/(元·t−1) 成本/(元·t−1) 次氯酸钠(有效氯8%) 390 310 120.90 水 3 700 1.00 3.70 硫酸钠 11.00 660 7.26 浓盐酸 0.20 50.00 0.01 氯化钡 6.60 2 300 15.18 能耗 — — 12.00 总成本 — — 159.05 注:以1 t含水率为84%的含铬铝型材污泥计算。 -
[1] ADEOSUN S O, SEKUNOWO O I, TAIWO O O, et al. Physical and mechanical properties of aluminum dross[J]. Advances in Materials, 2014, 3(2): 6-10. doi: 10.11648/j.am.20140302.11 [2] 裴廷权, 王里奥, 钟山, 等. 典型铬渣简易掩埋场铬渣及土壤铬污染特征和处置分析[J]. 环境工程学报, 2008, 2(7): 994-999. [3] HORI M, SHOZUGAWA K, MATSUO M. Hexavalent chromium pollution caused by dumped chromium slag at the urban park in Tokyo[J]. Journal of Material Cycles and Waste Management, 2015, 17(1): 201-205. doi: 10.1007/s10163-014-0243-0 [4] HE J Z, MENG Y T, ZHENG Y M, et al. Cr(Ⅲ) oxidation coupled with Mn(II) bacterial oxidation in the environment[J]. Journal of Soils and Sediments, 2010, 10(4): 767-773. doi: 10.1007/s11368-009-0139-0 [5] 陈永松, 周少奇. 铝型材厂工业污泥中重金属的含量及浸出特性[J]. 华南理工大学学报(自然科学版), 2008, 36(12): 70-74. doi: 10.3321/j.issn:1000-565X.2008.12.014 [6] ZHANG X, DENG B, SUN T, et al. Preparation of alumina nanorods from chromium-containing alumina sludge[J]. Nanoscale Research Letters, 2017, 12(1): 392-402. doi: 10.1186/s11671-017-2160-3 [7] BAO L, ZHANG T A, DOU Z H, et al. Kinetics of AlOOH dissolving in caustic solution studied by high-pressure DSC[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(1): 173-178. doi: 10.1016/S1003-6326(11)60695-X [8] GEZER E D, COOPER P A. Factors affecting sodium hypochlorite extraction of CCA from treated wood[J]. Waste Management, 2009, 29(12): 3009-3013. doi: 10.1016/j.wasman.2009.08.013 [9] 陈巍, 徐龙君, 李礼, 等. MnO2氧化去除制革污泥中的Cr(Ⅲ)[J]. 环境化学, 2010, 29(4): 39-42. [10] LI X B, QI T G, JIANG X M, et al. New technology for comprehensive utilization of aluminum-chromium residue from chromium salts production[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(2): 463-468. doi: 10.1016/S1003-6326(08)60082-5 [11] 陈胜娴. 含铬铝泥中铬的分离技术研究[D]. 武汉: 华中科技大学, 2014. [12] 景学森, 杨亚提, 蔡木林. 铬渣中Cr(Ⅵ)在盐溶液中的浸出机理[J]. 西北农林科技大学学报(自然科学版), 2007, 35(8): 151-154. doi: 10.3321/j.issn:1671-9387.2007.08.031 [13] 国家标准化管理委员会, 国家质量监督检验检疫总局. 次氯酸钠: GB 19106-2013[S]. 北京: 中国标准出版社, 2014. [14] 王晓, 刘庆芬, 王亚其, 等. 铝合金表面处理工业废渣制备氢氧化铝工艺[J]. 过程工程学报, 2014, 14(5): 841-845. [15] FARINHA A R, MENDES R, VIEIRA M T. Production of sintered α-alumina by explosive compaction from low temperature calcinated aluminum-rich sludge[J]. Waste & Biomass Valorization, 2013, 4(3): 627-633. [16] GOCMEZ H, ÖZCAN O. Low temperature synthesis of nanocrystalline α-Al2O3 by a tartaric acid gel method[J]. Materials Science & Engineering A, 2008, 475(1): 20-22. [17] GOPALAKANNAN V, PERIYASAMY S, VISWANATHAN N. One pot eco-friendly synthesis of highly dispersed alumina supported alginate biocomposite for efficient chromium(Ⅵ) removal[J]. Journal of Water Process Engineering, 2016, 10: 113-119. doi: 10.1016/j.jwpe.2016.02.005 [18] KIM E, SPOOREN J, BROOS K, et al. New method for selective Cr recovery from stainless steel slag by NaOCl assisted alkaline leaching and consecutive BaCrO4 precipitation[J]. Chemical Engineering Journal, 2016, 295: 542-551. doi: 10.1016/j.cej.2016.03.073 [19] 耿淑英, 付伟章, 郑书联, 等. 皮革厂含铬污泥铬回收及资源化利用[J]. 环境工程学报, 2017, 11(6): 3767-3772. doi: 10.12030/j.cjee.201603029 [20] GEZER E D, COOPER P A. Effects of wood species and retention levels on removal of copper, chromium, and arsenic from CCA-treated wood using sodium hypochlorite[J]. Journal of Forestry Research, 2016, 27(2): 433-442. doi: 10.1007/s11676-015-0172-3 [21] LIU Y C, ZHONG H, CAO Z F, et al. Molybdenum removal from copper ore concentrate by sodium hypochlorite leaching[J]. Mining Science & Technology, 2011, 21(1): 61-64. [22] 曹骏, 莫创荣, 杨青. 利用次氯酸钠去除制革污泥中的铬[J]. 皮革与化工, 2013, 30(5): 1-4. doi: 10.3969/j.issn.1674-0939.2013.05.001 [23] 陈东东, 童士唐. 2种分步浸提方法对土壤中Cr形态提取效果的比较[J]. 环境工程学报, 2014, 8(9): 4022-4026. [24] 周秋生, 张永康, 屈学理, 等. 乙酸钠修复铬污染土壤的机制研究[J]. 环境污染与防治, 2012, 34(5): 58-62. doi: 10.3969/j.issn.1001-3865.2012.05.012 [25] 王璇, 熊惠磊, 马骏, 等. 废弃铬盐厂土壤中铬的赋存特征及异位淋洗修复可行性研究[J]. 环境工程学报, 2016, 10(11): 6746-6752. doi: 10.12030/j.cjee.201511159 [26] WANG L P, PENG J Y, LI L L, et al. Solubility and metastable zone width of sodium chromate tetrahydrate[J]. Journal of Chemical & Engineering Data, 2013, 58(11): 3165-3169. [27] 张佳, 陈鸿汉, 张岩坤, 等. 柠檬酸淋洗去除土壤中铬的实验研究[J]. 环境科学学报, 2015, 35(7): 2247-2253. [28] GIL A, ARRIETA E, VICENTE M A, et al. Synthesis and CO2 adsorption properties of hydrotalcite-like compounds prepared from aluminum saline slag wastes[J]. Chemical Engineering Journal, 2018, 334: 1341-1350. doi: 10.1016/j.cej.2017.11.100 [29] MAHINROOSTA M, ALLAHVERDI A. A promising green process for synthesis of high purity activated-alumina nanopowder from secondary aluminum dross[J]. Journal of Cleaner Production, 2018, 179: 93-102. doi: 10.1016/j.jclepro.2018.01.079 [30] MAHINROOSTA M, ALLAHVERDI A. Enhanced alumina recovery from secondary aluminum dross for high purity nanostructured γ-alumina powder production: Kinetic study[J]. Journal of Environmental Management, 2018, 212: 278-291. [31] 胡璇, 匡玉云, 石磊. 铬酸钡分光光度法测定高硫铝土矿中硫酸根[J]. 冶金分析, 2018, 38(12): 59-63. [32] 杨建军, 董小林. 城市固体废物环境治理成本核算及分析[J]. 桂林理工大学学报, 2013, 33(3): 467-475. doi: 10.3969/j.issn.1674-9057.2013.03.013