-
能源危机和环境污染是当今人类社会发展面临的2大突出难题。通过生物的方法从污水中获得新能源,从可持续发展的角度解决水污染问题已成为众多研究者关注的领域。微生物燃料电池(microbial fuel cell,MFC)是一种以微生物为催化剂将有机物中的化学能转化为电能的装置[1],以反硝化微生物作为阴极催化剂的生物阴极MFC可以利用微生物还原废水中的氮,同时产生电能。在阳极室厌氧环境下,有机物在微生物作用下分解并释放出电子和质子,电子依靠合适的电子传递介体在生物组分和阳极之间进行有效传递,并通过外电路传递到阴极形成电流;在阴极室中,硝酸盐、亚硝酸盐等的氮在阴极反硝化菌作用下获得电子,被还原为氮气[2]。CLAUWAERT等[3]首次构建了双室生物阴极反硝化MFC,利用好氧厌氧混合污泥接种阴极室,实现了阴极还原硝酸盐的同时产生电能。VIRDIS等[4]将生物阴极MFC与好氧硝化反应器相结合,增大了硝酸盐去除速率和产电能力。XIE等[5-6]将MFC与AA/O污水处理工艺相结合,构建MFC-AA/O反应器,可以将反应器的有机物和总氮去除率平均提高15.93%和9.25%,平均输出电压约为(168.8±8.2) mV,实现了在增强污水脱氮效率的同时产生电能。因此,反硝化生物阴极MFC技术有望帮助解决城市污水处理行业既要求处理效率高又要求节能降耗的矛盾,在含氮污水处理领域具有极佳的应用前景[7]。
在反硝化生物阴极MFC中,微生物作为阴极还原反应的催化剂,起着决定性作用[8]。目前,关于生物阴极反硝化微生物的研究多集中在混菌MFC的生物阴极群落结构上。PARK等[9]通过PCR-DGGE分析了接种污水厂厌氧污泥的反硝化阴极生物膜的群落结构,发现α-proteobacteria,β-proteobacteria,γ-proteobacteria和flavobacteria是阴极主要的菌群。XIAO等[10]通过454测序,确认了proteobacteria为反硝化生物阴极生物膜上主要的门,同时猜测Alphaproteobacteria、Anaerolineae、Phycisphaerae可能是同步产电反硝化菌。VIRDIS等[11-12]通过FISH技术确认了电极生物膜内层大量富集了Paracoccus和Pseudomonas,并猜测其参与产电。XIE等[6]的研究也表明,MFC-AA/O反应器缺氧区阴极板上大量定植了Proteobacteria、Bacteroidetes和Chloroflexi,并且发现Pseudomonas、Thauera、Emticicia等菌属丰度大大超过了悬浮液中丰度,猜测可能与产电相关。
对于MFC区别于其他燃料电池最核心的微生物催化过程,尤其是产电微生物与电极之间的电子传递机制,目前的了解尚十分有限,降低由其引起的非欧姆阻力是进一步降低内阻,提高输出功率,使MFC走向实用的关键。分离获得高效产电微生物纯菌,并以纯菌作为对象进行MFC产电机理解析是可行的途径[13]。然而,目前关于纯菌生物阴极MFC的报道很少,而产电同步反硝化阴极细菌的分离纯化也尚未见报道。本研究从稳定运行的MFC-AA/O反应器缺氧区阴极板上分离纯化出1株同步产电反硝化菌株,以此构建纯菌生物阴极MFC,研究其产电同步反硝化能力,优化其脱氮条件,探究其电子传递机制,为反硝化生物阴极MFC的实际应用提供参考。
生物阴极微生物燃料电池中同步产电反硝化菌的分离鉴定与性能
Isolation and identification of a simultaneous electricity production and denitrification strain in a microbial fuel cell with biocathode and its characteristics
-
摘要: 利用反硝化筛选培养基从稳定运行的MFC-AA/O反应器阴极板上分离纯化反硝化细菌,经16S rRNA鉴定后,接种于双室MFC的阴极,测试其产电能力以筛选同步产电反硝化细菌,之后对MFC的运行温度和pH进行优化,最后通过扫描循环伏安曲线分析其产电机理。结果表明:分离获得的一株反硝化菌经鉴定为铜绿假单胞杆菌(Pseudomonas aeruginosa),该菌可实现同步产电脱氮,最高输出电压可达168 mV左右,其脱氮反应的最优pH为7.5,最适温度为30 ℃;在生物阴极起催化产电反硝化作用的可能是Pseudomonas aeruginosa的分泌物,其作为中介体,可从电极获得电子,完成硝酸盐的还原。上述结果说明,Pseudomonas aeruginosa作为接种MFC生物阴极的纯菌,可以实现同步产电反硝化,为反硝化生物阴极MFC的实际应用奠定基础。Abstract: Multiple denitrification screening mediums were used to isolate and purify denitrifying bacteria from the biocathode of a stably operated MFC-AA/O reactor, and 16S rRNA sequence analysis was conducted to identify the pure strains. The electricity production capacity was tested by inoculating the pure bacterial strains into cathodic chambers of MFCs to screen simultaneous electricity production and denitrification strains. Then, operation temperature and pH of MFC were further optimized. Finally, the electricity production mechanism was analyzed by scanning cyclic voltammetry curve. The results indicated that one isolated strain, identified as Pseudomonas aeruginosa, could achieve simultaneous electricity production and denitrification. The maximum output voltage could reach about 168 mV, and the optimum pH and temperature for denitrification were 7.5 and 30 ℃, respectively. Electrochemical analysis indicated that the simultaneous electricity production and denitrification might be catalyzed by some secretions of Pseudomonas aeruginosa, which could act as mediators to obtain electrons from the electrode and complete nitrates reduction. This study demonstrated that Pseudomonas aeruginosa as a pure electricigen inoculated in cathode chamber of MFC could achieve simultaneous electricity production and denitrification, which might lay a foundation for the practical application of MFC with denitrifying biocathode.
-
表 1 分离获得的反硝化菌类型
Table 1. Types of isolated denitrifying bacteria
样品编号 最相似菌种名称 登录号 相似度/% BZ1 Pseudomonas sp. KP462872.1 100 BZ2 Pseudomonas sp. KP979538.1 100 BZ3 Pseudomonas sp. KF791346.1 100 BZ4 Pseudomonas sp. KT368822.1 100 BZ5 Pseudomonas aeruqinosa NC002516.2 100 BZ6 Pseudomonas sp. KF544922.1 100 BZ7 Pseudomonas indoloxydans strain KP462871.1 99 BZ8 Pseudomonas stutzeri strain NZ-CP007441.1 100 -
[1] LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells: Methodology and technology[J]. Environmental Science & Technology, 2006, 40(17): 5181-5192. [2] THAUER R K, JUNGERMANN K, DECKER K. Energy conservation in chemotrophic anaerobic bacteria[J]. Bacteriological Reviews, 1977, 41(1): 100-180. [3] CLAUWAERT P, RABAEY K, AELTERMAN P, et al. Biological denitrification in microbial fuel cells[J]. Environmental Science & Technology, 2007, 41(9): 3354-3360. [4] VIRDIS B, RABAEY K, YUAN Z, et al. Microbial fuel cells for simultaneous carbon and nitrogen removal[J]. Water Research, 2008, 42(12): 3013-3024. doi: 10.1016/j.watres.2008.03.017 [5] XIE B, DONG W, LIU B, et al. Enhancement of pollutants removal from real sewage by embedding microbial fuel cell in anaerobic-anoxic-oxic wastewater treatment process[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(3): 448-454. [6] XIE B, LIU B, YI Y, et al. Microbiological mechanism of the improved nitrogen and phosphorus removal by embedding microbial fuel cell in anaerobic-anoxic-oxic wastewater treatment process[J]. Bioresource Technology, 2016, 207: 109-117. doi: 10.1016/j.biortech.2016.01.090 [7] GREGORY K B, BOND D R, LOVLEY D R. Graphite electrodes as electron donors for anaerobic respiration[J]. Environmental Microbiology, 2004, 6(6): 596-604. doi: 10.1111/emi.2004.6.issue-6 [8] MOHAN S V, VELVIZHI G, MODESTRA J A, et al. Microbial fuel cell: Critical factors regulating bio-catalyzed electrochemical process and recent advancements[J]. Renewable and Sustainable Energy Reviews, 2014, 40: 779-797. doi: 10.1016/j.rser.2014.07.109 [9] PARK H I, KIM J S, KIM D K, et al. Nitrate-reducing bacterial community in a biofilm-electrode reactor[J]. Enzyme and Microbial Technology, 2006, 39(3): 453-458. doi: 10.1016/j.enzmictec.2005.11.028 [10] XIAO Y, ZHENG Y, WU S, et al. Bacterial community structure of autotrophic denitrification biocathode by 454 pyrosequencing of the 16S rRNA gene[J]. Microbial Ecology, 2015, 69(3): 492-499. doi: 10.1007/s00248-014-0492-4 [11] VIRDIS B, RABAEY K, ROZENDAL R A, et al. Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells[J]. Water Research, 2010, 44(9): 2970-2980. doi: 10.1016/j.watres.2010.02.022 [12] VIRDIS B, READ S T, RABAEY K, et al. Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode[J]. Bioresource Technology, 2011, 102(1): 334-341. doi: 10.1016/j.biortech.2010.06.155 [13] MIN B, CHENG S, LOGAN B E. Electricity generation using membrane and salt bridge microbial fuel cells[J]. Water Research, 2005, 39(9): 1675-1686. doi: 10.1016/j.watres.2005.02.002 [14] LI P, ZHENG Y, CHEN S, et al. Identification of an aerobic denitrifying bacterium and its potential application in wastewater treatment[J]. Chinese Journal of Applied and Environmental Biology, 2005, 11(5): 600-603. [15] BALCH W, FOX G, MAGRUM L, et al. Methanogens: Reevaluation of a unique biological group[J]. Microbiological Reviews, 1979, 43(2): 260-293. [16] CHENG S, LOGAN B E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells[J]. Electrochemistry Communications, 2007, 9(3): 492-496. doi: 10.1016/j.elecom.2006.10.023 [17] DINESHKUMAR N, SARAVANAKUMAR C, VASANTH M, et al. Genetic and physiological characterization of denitrifying bacteria from brackishwater shrimp culture ponds of India[J]. International Biodeterioration & Biodegradation, 2014, 92: 49-56. [18] 国家环境保护总局, 水和废水监测分析方法 [M]. 4版 北京: 中国环境科学出版社, 2009. [19] RABAEY K, BOON N, SICILIANO S D, et al. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Applied and Environmental Microbiology, 2004, 70(9): 5373-5382. doi: 10.1128/AEM.70.9.5373-5382.2004 [20] RABAEY K, BOON N, H FTE M, et al. Microbial phenazine production enhances electron transfer in biofuel cells[J]. Environmental Science & Technology, 2005, 39(9): 3401-3408. [21] RABAEY K, LISSENS G, SICILIANO S D, et al. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency[J]. Biotechnology Letters, 2003, 25(18): 1531-1535. doi: 10.1023/A:1025484009367 [22] LI C, REN H, XU M, et al. Study on anaerobic ammonium oxidation process coupled with denitrification microbial fuel cells (MFCs) and its microbial community analysis[J]. Bioresource Technology, 2015, 175: 545-552. doi: 10.1016/j.biortech.2014.10.156 [23] YAMAMOTO-IKEMOTO R, KOMORI T, NOMURI M, et al. Nitrogen removal from hydroponic culture wastewater by autotrophic denitrification using thiosulfate[J]. Water Science and Technology, 2000, 42(3/4): 369-376. [24] SUN Y, LI A, ZHANG X, et al. Regulation of dissolved oxygen from accumulated nitrite during the heterotrophic nitrification and aerobic denitrification of Pseudomonas stutzeri T13[J]. Applied Microbiology and Biotechnology, 2015, 99(7): 3243-3248. doi: 10.1007/s00253-014-6221-6