钙离子浓度对水华微囊藻生物钙化固定CO2的影响

李晓敏, 罗克梦, 和凤, 杨珍妮, 范文宏. 钙离子浓度对水华微囊藻生物钙化固定CO2的影响[J]. 环境工程学报, 2017, 11(12): 6327-6331. doi: 10.12030/j.cjee.201704105
引用本文: 李晓敏, 罗克梦, 和凤, 杨珍妮, 范文宏. 钙离子浓度对水华微囊藻生物钙化固定CO2的影响[J]. 环境工程学报, 2017, 11(12): 6327-6331. doi: 10.12030/j.cjee.201704105
LI Xiaomin, LUO Kemeng, HE Feng, YANG Zhenni, FAN Wenhong. Influence of calcium concentration on CO2 fixation with bio-calcification of Microcystis flos-aquae[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6327-6331. doi: 10.12030/j.cjee.201704105
Citation: LI Xiaomin, LUO Kemeng, HE Feng, YANG Zhenni, FAN Wenhong. Influence of calcium concentration on CO2 fixation with bio-calcification of Microcystis flos-aquae[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6327-6331. doi: 10.12030/j.cjee.201704105

钙离子浓度对水华微囊藻生物钙化固定CO2的影响

  • 基金项目:

    国家自然科学基金资助项目(51178019)

    北京市自然科学基金资助项目(8112019)

  • 中图分类号: X172

Influence of calcium concentration on CO2 fixation with bio-calcification of Microcystis flos-aquae

  • Fund Project:
  • 摘要: 以水华微囊藻为研究对象,对其生物钙化固定二氧化碳的潜能进行了探索,并研究了不同钙离子浓度对其生物钙化固碳能力的影响。结果表明,水华微囊藻表现出明显的生物钙化作用,且其生物钙化能力随钙离子初始浓度不同而变化,当钙离子初始浓度为170 mg·L-1时,水华微囊藻生物钙化能力较强。在藻细胞初始浓度为1.7×106~1.8×106 cell·mL-1条件下,1 000 mL的藻液可固定二氧化碳量达36.5 mg。实验结果为拓展藻类生物钙化固定二氧化碳的研究提供了新的思路。
  • 加载中
  • [1] OTSUKI T. A study for the biological CO2 fixation and utilization system[J]. Science of the Total Environment,2001,277(1/2/3):21-25
    [2] BARABESI C, GALIZZI A, MASTROMEI G, et al. Bacillus subtilis gene cluster involved in calcium carbonate biomineralization[J]. Journal of Bacteriology,2007,189(1):228-235
    [3] SARAYU K, IYER N R, MURTHY A R. Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials:A review[J]. Applied Biochemistry and Biotechnology,2014,172(5):2308-2323
    [4] BROWNLEE C, TAYLOR A R. Algal Calcification and Silification[M]. Macmillan Publishers Ltd., Nature Publishing Group,2002:1-6
    [5] RIDGWELL A, ZEEBE R E. The role of the global carbonate cycle in the regulation and evolution of the earth system[J]. Earth and Planetary Science Letters,2005,234(3):299-315
    [6] GAUTRET P, TRICHET J. Automicrites in modern cyanobacterial stromatolitic deposits of Rangiroa, Tuamotu Archipelago, French Polynesia:Biochemical parameters underlaying their formation[J]. Sedimentary Geology,2005,178(1):55-73
    [7] BADGER M R, PRICE G D. CO2 concentrating mechanisms in cyanobacteria:Molecular components, their diversity and evolution[J]. Journal of Experimental Botany,2003,383(54):609-622
    [8] HAMMES F, VERSTRAETE W. Key roles of pH and calcium metabolism in microbial carbonate precipitation[J]. Reviews in Environmental Science and Biotechnology,2002,1(1):3-7
    [9] LEE B D, APEL W A, WALTON M R. Screening of cyanobacterial species for calcification[J]. Biotechnology Progress,2004,20(5):1345-1351
    [10] LEE B D, APEL W A, WALTON M R. Calcium carbonate formation by Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807[J]. Bioresource Technology,2006,97(18):2427-2434
    [11] BRAISSANT O, DECHO A W, DUPRAZ C, et al. Exopolymeric substances of sulfate-reducing bacteria:Interactions with calcium at alkaline pH and implication for formation of carbonate minerals[J]. Geobiology,2007,5(4):401-411
    [12] DENG H, WANG X M, DU C, et al. Combined effect of ion concentration and functional groups on surface chemistry modulated CaCO3 crystallization[J]. CrystEngComm,2012,14(20):6647-6653
    [13] HAMMES F, VERSTRAETE W. Key roles of pH and calcium metabolism in microbial carbonate precipitation[J]. Reviews in Environmental Science and Biotechnology,2002,1(1):3-7
    [14] OBST M, WEHRLI B, DITTRICH M. CaCO3 nucleation by cyanobacteria:Laboratory evidence for a passive, surface-induced mechanism[J]. Geobiology,2009,7(3):324-347
    [15] MERZ M U E. Biology of carbonate precipitation by cyanobacteria[J]. Facies,1993,29(1):81-101
    [16] THOMPSON J B, SCHULTZE-LAM S, BEVERIDGE T J, et al. Whiting events:Biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton[J]. Limnology & Oceanography,1997,42(1):133-141
    [17] RIDING R. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition[J]. Geobiology,2006,4(4):299-316
    [18] YANG Z N, LI X M, UMAR A, et al. Insight into calcification of Synechocystis sp. enhanced by extracellular carbonic anhydrase[J]. RSC Advances,2016,6(35):29811-29817
    [19] JANSSON C, NORTHEN T. Calcifying cyanobacteria:The potential of biomineralization for carbon capture and storage[J]. Current Opinion in Biotechnology,2010,21(3):365-371
  • 加载中
计量
  • 文章访问数:  2374
  • HTML全文浏览数:  2098
  • PDF下载数:  375
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-05-31
  • 刊出日期:  2017-12-07
李晓敏, 罗克梦, 和凤, 杨珍妮, 范文宏. 钙离子浓度对水华微囊藻生物钙化固定CO2的影响[J]. 环境工程学报, 2017, 11(12): 6327-6331. doi: 10.12030/j.cjee.201704105
引用本文: 李晓敏, 罗克梦, 和凤, 杨珍妮, 范文宏. 钙离子浓度对水华微囊藻生物钙化固定CO2的影响[J]. 环境工程学报, 2017, 11(12): 6327-6331. doi: 10.12030/j.cjee.201704105
LI Xiaomin, LUO Kemeng, HE Feng, YANG Zhenni, FAN Wenhong. Influence of calcium concentration on CO2 fixation with bio-calcification of Microcystis flos-aquae[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6327-6331. doi: 10.12030/j.cjee.201704105
Citation: LI Xiaomin, LUO Kemeng, HE Feng, YANG Zhenni, FAN Wenhong. Influence of calcium concentration on CO2 fixation with bio-calcification of Microcystis flos-aquae[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6327-6331. doi: 10.12030/j.cjee.201704105

钙离子浓度对水华微囊藻生物钙化固定CO2的影响

  • 1. 北京航空航天大学空间与环境学院, 北京 100191
基金项目:

国家自然科学基金资助项目(51178019)

北京市自然科学基金资助项目(8112019)

摘要: 以水华微囊藻为研究对象,对其生物钙化固定二氧化碳的潜能进行了探索,并研究了不同钙离子浓度对其生物钙化固碳能力的影响。结果表明,水华微囊藻表现出明显的生物钙化作用,且其生物钙化能力随钙离子初始浓度不同而变化,当钙离子初始浓度为170 mg·L-1时,水华微囊藻生物钙化能力较强。在藻细胞初始浓度为1.7×106~1.8×106 cell·mL-1条件下,1 000 mL的藻液可固定二氧化碳量达36.5 mg。实验结果为拓展藻类生物钙化固定二氧化碳的研究提供了新的思路。

English Abstract

参考文献 (19)

返回顶部

目录

/

返回文章
返回