[1]
|
OTSUKI T. A study for the biological CO2 fixation and utilization system[J]. Science of the Total Environment,2001,277(1/2/3):21-25
|
[2]
|
BARABESI C, GALIZZI A, MASTROMEI G, et al. Bacillus subtilis gene cluster involved in calcium carbonate biomineralization[J]. Journal of Bacteriology,2007,189(1):228-235
|
[3]
|
SARAYU K, IYER N R, MURTHY A R. Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials:A review[J]. Applied Biochemistry and Biotechnology,2014,172(5):2308-2323
|
[4]
|
BROWNLEE C, TAYLOR A R. Algal Calcification and Silification[M]. Macmillan Publishers Ltd., Nature Publishing Group,2002:1-6
|
[5]
|
RIDGWELL A, ZEEBE R E. The role of the global carbonate cycle in the regulation and evolution of the earth system[J]. Earth and Planetary Science Letters,2005,234(3):299-315
|
[6]
|
GAUTRET P, TRICHET J. Automicrites in modern cyanobacterial stromatolitic deposits of Rangiroa, Tuamotu Archipelago, French Polynesia:Biochemical parameters underlaying their formation[J]. Sedimentary Geology,2005,178(1):55-73
|
[7]
|
BADGER M R, PRICE G D. CO2 concentrating mechanisms in cyanobacteria:Molecular components, their diversity and evolution[J]. Journal of Experimental Botany,2003,383(54):609-622
|
[8]
|
HAMMES F, VERSTRAETE W. Key roles of pH and calcium metabolism in microbial carbonate precipitation[J]. Reviews in Environmental Science and Biotechnology,2002,1(1):3-7
|
[9]
|
LEE B D, APEL W A, WALTON M R. Screening of cyanobacterial species for calcification[J]. Biotechnology Progress,2004,20(5):1345-1351
|
[10]
|
LEE B D, APEL W A, WALTON M R. Calcium carbonate formation by Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807[J]. Bioresource Technology,2006,97(18):2427-2434
|
[11]
|
BRAISSANT O, DECHO A W, DUPRAZ C, et al. Exopolymeric substances of sulfate-reducing bacteria:Interactions with calcium at alkaline pH and implication for formation of carbonate minerals[J]. Geobiology,2007,5(4):401-411
|
[12]
|
DENG H, WANG X M, DU C, et al. Combined effect of ion concentration and functional groups on surface chemistry modulated CaCO3 crystallization[J]. CrystEngComm,2012,14(20):6647-6653
|
[13]
|
HAMMES F, VERSTRAETE W. Key roles of pH and calcium metabolism in microbial carbonate precipitation[J]. Reviews in Environmental Science and Biotechnology,2002,1(1):3-7
|
[14]
|
OBST M, WEHRLI B, DITTRICH M. CaCO3 nucleation by cyanobacteria:Laboratory evidence for a passive, surface-induced mechanism[J]. Geobiology,2009,7(3):324-347
|
[15]
|
MERZ M U E. Biology of carbonate precipitation by cyanobacteria[J]. Facies,1993,29(1):81-101
|
[16]
|
THOMPSON J B, SCHULTZE-LAM S, BEVERIDGE T J, et al. Whiting events:Biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton[J]. Limnology & Oceanography,1997,42(1):133-141
|
[17]
|
RIDING R. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition[J]. Geobiology,2006,4(4):299-316
|
[18]
|
YANG Z N, LI X M, UMAR A, et al. Insight into calcification of Synechocystis sp. enhanced by extracellular carbonic anhydrase[J]. RSC Advances,2016,6(35):29811-29817
|
[19]
|
JANSSON C, NORTHEN T. Calcifying cyanobacteria:The potential of biomineralization for carbon capture and storage[J]. Current Opinion in Biotechnology,2010,21(3):365-371
|