[1] OTSUKI T. A study for the biological CO2 fixation and utilization system[J]. Science of the Total Environment,2001,277(1/2/3):21-25
[2] BARABESI C, GALIZZI A, MASTROMEI G, et al. Bacillus subtilis gene cluster involved in calcium carbonate biomineralization[J]. Journal of Bacteriology,2007,189(1):228-235
[3] SARAYU K, IYER N R, MURTHY A R. Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials:A review[J]. Applied Biochemistry and Biotechnology,2014,172(5):2308-2323
[4] BROWNLEE C, TAYLOR A R. Algal Calcification and Silification[M]. Macmillan Publishers Ltd., Nature Publishing Group,2002:1-6
[5] RIDGWELL A, ZEEBE R E. The role of the global carbonate cycle in the regulation and evolution of the earth system[J]. Earth and Planetary Science Letters,2005,234(3):299-315
[6] GAUTRET P, TRICHET J. Automicrites in modern cyanobacterial stromatolitic deposits of Rangiroa, Tuamotu Archipelago, French Polynesia:Biochemical parameters underlaying their formation[J]. Sedimentary Geology,2005,178(1):55-73
[7] BADGER M R, PRICE G D. CO2 concentrating mechanisms in cyanobacteria:Molecular components, their diversity and evolution[J]. Journal of Experimental Botany,2003,383(54):609-622
[8] HAMMES F, VERSTRAETE W. Key roles of pH and calcium metabolism in microbial carbonate precipitation[J]. Reviews in Environmental Science and Biotechnology,2002,1(1):3-7
[9] LEE B D, APEL W A, WALTON M R. Screening of cyanobacterial species for calcification[J]. Biotechnology Progress,2004,20(5):1345-1351
[10] LEE B D, APEL W A, WALTON M R. Calcium carbonate formation by Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807[J]. Bioresource Technology,2006,97(18):2427-2434
[11] BRAISSANT O, DECHO A W, DUPRAZ C, et al. Exopolymeric substances of sulfate-reducing bacteria:Interactions with calcium at alkaline pH and implication for formation of carbonate minerals[J]. Geobiology,2007,5(4):401-411
[12] DENG H, WANG X M, DU C, et al. Combined effect of ion concentration and functional groups on surface chemistry modulated CaCO3 crystallization[J]. CrystEngComm,2012,14(20):6647-6653
[13] HAMMES F, VERSTRAETE W. Key roles of pH and calcium metabolism in microbial carbonate precipitation[J]. Reviews in Environmental Science and Biotechnology,2002,1(1):3-7
[14] OBST M, WEHRLI B, DITTRICH M. CaCO3 nucleation by cyanobacteria:Laboratory evidence for a passive, surface-induced mechanism[J]. Geobiology,2009,7(3):324-347
[15] MERZ M U E. Biology of carbonate precipitation by cyanobacteria[J]. Facies,1993,29(1):81-101
[16] THOMPSON J B, SCHULTZE-LAM S, BEVERIDGE T J, et al. Whiting events:Biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton[J]. Limnology & Oceanography,1997,42(1):133-141
[17] RIDING R. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition[J]. Geobiology,2006,4(4):299-316
[18] YANG Z N, LI X M, UMAR A, et al. Insight into calcification of Synechocystis sp. enhanced by extracellular carbonic anhydrase[J]. RSC Advances,2016,6(35):29811-29817
[19] JANSSON C, NORTHEN T. Calcifying cyanobacteria:The potential of biomineralization for carbon capture and storage[J]. Current Opinion in Biotechnology,2010,21(3):365-371