Miseq测序分析活性污泥系统中细菌群落的动态变化

闻韵, 王晓慧, 林常青. Miseq测序分析活性污泥系统中细菌群落的动态变化[J]. 环境工程学报, 2015, 9(11): 5225-5230. doi: 10.12030/j.cjee.20151115
引用本文: 闻韵, 王晓慧, 林常青. Miseq测序分析活性污泥系统中细菌群落的动态变化[J]. 环境工程学报, 2015, 9(11): 5225-5230. doi: 10.12030/j.cjee.20151115
Wen Yun, Wang Xiaohui, Lin Changqing. Bacterial community dynamics in an activated sludge system based on Miseq sequencing[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5225-5230. doi: 10.12030/j.cjee.20151115
Citation: Wen Yun, Wang Xiaohui, Lin Changqing. Bacterial community dynamics in an activated sludge system based on Miseq sequencing[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5225-5230. doi: 10.12030/j.cjee.20151115

Miseq测序分析活性污泥系统中细菌群落的动态变化

  • 基金项目:

    国家自然科学基金资助项目(51408020)

    环境模拟与污染控制国家联合重点实验室专项经费(13k06ESPCT)

    中央高校科研业务费项目(ZY1306)

  • 中图分类号: X172

Bacterial community dynamics in an activated sludge system based on Miseq sequencing

  • Fund Project:
  • 摘要: 采用基于16S rRNA基因的Miseq测序方法,分析了某小试序批式反应器(SBR)中,细菌群落结构在1年中的动态变化。在研究中,系统运行稳定,COD出水浓度均在40 mg/L以下,总氮(TN)和总磷(TP)出水浓度分别在20 mg/L和0.3 mg/L之下。细菌的群落组成变化明显,在检测到的2094个OTU中,有176个OTU只存在于3个以下的样品中。在385个属的细菌中,有54个属的微生物只存在于3个以下的样品中。移动窗口分析表明,系统中细菌群落的平均变化率Δt(30 d)为21.3%±6.2%,稳定的系统功能并未耦合稳定的细菌群落结构。Mantel test分析表明,溶解氧(DO),进水COD浓度和温度对细菌群落结构有显著影响。方差分解分析(VPA)结果表明,水质参数及运行参数可分别解释23.6%和21.5%的群落结构变化。
  • 加载中
  • [1] Briones A., Raskin L. Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Current Opinion in Biotechnology, 2003, 14(3): 270-276
    [2] Rittmann B. E., Hausner M., Loffler F., et al. A vista for microbial ecology and environmental biotechnology. Environmental Science & Technology, 2006, 40(4): 1096-103
    [3] Wang Xiaohui, Wen Xianghua, Yan Hengjing, et al. Bacterial community dynamics in a functionally stable pilot-scale wastewater treatment plant. Bioresource Technology, 2011, 102(3): 2352-2357
    [4] Wang Xiaohui, Wen Xianghua, Xia Yu, et al. Ammonia oxidizing bacteria community dynamics in a pilot-scale wastewater treatment plant. PLoS One, 2012, 7(4): e36272
    [5] Wells G. F., Park H. D., Yeung C.-H., et al. Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: Betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environmental Microbiology, 2009, 11(9): 2310-2328
    [6] Gentile M. E., Nyman J. L., Criddle C. S. Correlation of patterns of denitrification instability in replicated bioreactor communities with shifts in the relative abundance and the denitrification patterns of specific populations. The ISME Journal, 2007, 1(8): 714-728
    [7] Slater F. R., Johnson C. R., Blackall L. L., et al. Monitoring associations between clade-level variation, overall community structure and ecosystem function in enhanced biological phosphorus removal(EBPR) systems using terminal-restriction fragment length polymorphism(T-RFLP). Water Research, 2010, 44(17): 4908-4923
    [8] Fernandez A. S., Hashsham S. A., Dollhopf S. L., et al. Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Applied and Environmental Microbiology, 2000, 66(9): 4058-4067
    [9] van der Gast C. J., Ager D., Lilley A. K. Temporal scaling of bacterial taxa is influenced by both stochastic and deterministic ecological factors. Environmental Microbiology 2008, 10(6): 1411-1418
    [10] Caporaso J. G., Lauber C. L., Walters W. A., et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(Suppl 1): 4516-4522
    [11] Ye Lin, Zhang Tong. Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Applied Microbiology and Biotechnology, 2013, 97(6): 2681-2690
    [12] Xie Jianping, He Zhili, Liu Xinxing, et al. GeoChip-based analysis of the functional gene diversity and metabolic potential of microbial communities in acid mine drainage. Applied and Environmental Microbiology, 2011, 77(3): 991-999
    [13] Wang Xiaohui, Hu Man, Xia Yu, et al. Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Applied and Environmental Microbiology, 2012, 78(19): 7042-7047
    [14] Marzorati M., Wittebolle L., Boon N., et al. How to get more out of molecular fingerprints: Practical tools for microbial ecology. Environmental Microbiology, 2008, 10(6): 1571-1581
    [15] Wang Xiaohui, Wen Xianghua, Yan Hengjing, et al. Community dynamics of ammonia oxidizing bacteria in a full-scale wastewater treatment system with nitrification stability. Frontiers of Environmental Science & Engineering in China, 2011, 5(1): 92-98
    [16] Zhang Tong, Shao Mingfei, Ye Lin. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. The ISME Journal, 2012, 6(6): 1137-1147
    [17] Xia Siqing, Duan Liang, Song Yonghui, et al. Bacterial community structure in geographically distributed biological wastewater treatment reactors. Environmental Science & Technology, 2010, 44(19): 7391-7396
    [18] Wittebolle L., Vervaeren H., Verstraete W., et al. Quantifying community dynamics of nitrifiers in functionally stable reactors. Applied and Environmental Microbiology, 2008, 74(1): 286-293
    [19] Miura Y., Hiraiwa M. N., Ito T., et al. Bacterial community structures in MBRs treating municipal wastewater: Relationship between community stability and reactor performance. Water Research, 2007, 41(3): 627-637
    [20] Wang X., Wen X., Criddle C., et al. Bacterial community dynamics in two full-scale wastewater treatment systems with functional stability. Journal of Applied Microbiology, 2010, 109(4): 1218-1226
    [21] Gentile M. E., Jessup C. M., Nyman J. L., et al. Correlation of functional instability and community dynamics in denitrifying dispersed-growth reactors. Applied and Environmental Microbiology, 2007, 73(3): 680-690
    [22] Wells G. F., Park H.-D., Eggleston B., et al. Fine-scale bacterial community dynamics and the taxa-time relationship within a full-scale activated sludge bioreactor. Water Research, 2011, 45(17): 5476-5488
    [23] Park H. D., Noguera D. R. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Research, 2004, 38(14-15): 3275-3286
    [24] Xia Siqing, Li Junying, Wang Rongchang. Nitrogen removal performance and microbial community structure dynamics response to carbon nitrogen ratio in a compact suspended carrier biofilm reactor. Ecological Engineering, 2008, 32(3): 256-262
    [25] Pholchan M. K., de C. Baptista J., Davenport R. J., et al. Systematic study of the effect of operating variables on reactor performance and microbial diversity in laboratory-scale activated sludge reactors. Water Research, 2010, 44(5): 1341-1352
    [26] Ebie Y., Matsumura M., Noda N., et al. Community analysis of nitrifying bacteria in an advanced and compact Gappel-Johkasou by FISH and PCR-DGGE. Water Science and Technology, 2002, 46(11-12): 105-111
    [27] Li Tianling, Bo Luji, Yang Fan, et al. Comparison of the removal of COD by a hybrid bioreactor at low and room temperature and the associated microbial characteristics. Bioresource Technology, 2012, 108: 28-34
    [28] Das P., Williams C. J., Fulthorpe R. R., et al. Changes in bacterial community structure after exposure to silver nanoparticles in natural waters. Environmental Science & Technology, 2012, 46(16): 9120-9128
    [29] Zhang Jingxin, Zhang Yaobin, Quan Xie, et al. Effects of ferric iron on the anaerobic treatment and microbial biodiversity in a coupled microbial electrolysis cell(MEC)-Anaerobic reactor. Water Research, 2013, 47(15): 5719-5728
    [30] Cui Youwei, Peng Changyao, Peng Yongzhen, et al. Effects of salt on microbial populations and treatment performance in purifying saline sewage using the MUCT process. ClEAN-Soil, Air, Water, 2009, 37(8): 649-656
    [31] Ofiteru I. D., Lunn M., Curtis T. P., et al. Combined niche and neutral effects in a microbial wastewater treatment community. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(35): 15345-15350
    [32] Curtis T. P., Sloan W. T. Towards the design of diversity: Stochastic models for community assembly in wastewater treatment plants. Water Science and Technology, 2006, 54(1): 227-236
    [33] Petropoulos P., Gilbride K. A. Nitrification in activated sludge batch reactors is linked to protozoan grazing of the bacterial population. Canadian Journal of Microbiology, 2005, 51(9): 791-799
    [34] Kunin V., He Shaomei, Warnecke F., et al. A bacterial metapopulation adapts locally to phage predation despite global dispersal. Genome Research, 2008, 18(2): 293-297
  • 加载中
计量
  • 文章访问数:  1607
  • HTML全文浏览数:  1088
  • PDF下载数:  563
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-10-29
  • 刊出日期:  2015-11-18
闻韵, 王晓慧, 林常青. Miseq测序分析活性污泥系统中细菌群落的动态变化[J]. 环境工程学报, 2015, 9(11): 5225-5230. doi: 10.12030/j.cjee.20151115
引用本文: 闻韵, 王晓慧, 林常青. Miseq测序分析活性污泥系统中细菌群落的动态变化[J]. 环境工程学报, 2015, 9(11): 5225-5230. doi: 10.12030/j.cjee.20151115
Wen Yun, Wang Xiaohui, Lin Changqing. Bacterial community dynamics in an activated sludge system based on Miseq sequencing[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5225-5230. doi: 10.12030/j.cjee.20151115
Citation: Wen Yun, Wang Xiaohui, Lin Changqing. Bacterial community dynamics in an activated sludge system based on Miseq sequencing[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5225-5230. doi: 10.12030/j.cjee.20151115

Miseq测序分析活性污泥系统中细菌群落的动态变化

  • 1. 洛阳理工学院土木工程学院, 洛阳 471023
  • 2. 北京化工大学环境科学与工程系, 北京 100029
基金项目:

国家自然科学基金资助项目(51408020)

环境模拟与污染控制国家联合重点实验室专项经费(13k06ESPCT)

中央高校科研业务费项目(ZY1306)

摘要: 采用基于16S rRNA基因的Miseq测序方法,分析了某小试序批式反应器(SBR)中,细菌群落结构在1年中的动态变化。在研究中,系统运行稳定,COD出水浓度均在40 mg/L以下,总氮(TN)和总磷(TP)出水浓度分别在20 mg/L和0.3 mg/L之下。细菌的群落组成变化明显,在检测到的2094个OTU中,有176个OTU只存在于3个以下的样品中。在385个属的细菌中,有54个属的微生物只存在于3个以下的样品中。移动窗口分析表明,系统中细菌群落的平均变化率Δt(30 d)为21.3%±6.2%,稳定的系统功能并未耦合稳定的细菌群落结构。Mantel test分析表明,溶解氧(DO),进水COD浓度和温度对细菌群落结构有显著影响。方差分解分析(VPA)结果表明,水质参数及运行参数可分别解释23.6%和21.5%的群落结构变化。

English Abstract

参考文献 (34)

返回顶部

目录

/

返回文章
返回