模拟光伏间歇曝气两级SBR的脱氮除磷效果

秦燕, 周北海, 马方曙. 模拟光伏间歇曝气两级SBR的脱氮除磷效果[J]. 环境工程学报, 2015, 9(11): 5219-5224. doi: 10.12030/j.cjee.20151114
引用本文: 秦燕, 周北海, 马方曙. 模拟光伏间歇曝气两级SBR的脱氮除磷效果[J]. 环境工程学报, 2015, 9(11): 5219-5224. doi: 10.12030/j.cjee.20151114
Qin Yan, Zhou Beihai, Ma Fangshu. Simulating photovoltaic intermittent aeration two-stage sequence batch reactor(SBR) system for nitrogen and phosphorus removal[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5219-5224. doi: 10.12030/j.cjee.20151114
Citation: Qin Yan, Zhou Beihai, Ma Fangshu. Simulating photovoltaic intermittent aeration two-stage sequence batch reactor(SBR) system for nitrogen and phosphorus removal[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5219-5224. doi: 10.12030/j.cjee.20151114

模拟光伏间歇曝气两级SBR的脱氮除磷效果

  • 基金项目:

    国家"水体污染控制与治理"科技重大专项(2008ZX07105-002-01)

  • 中图分类号: X703

Simulating photovoltaic intermittent aeration two-stage sequence batch reactor(SBR) system for nitrogen and phosphorus removal

  • Fund Project:
  • 摘要: 基于农村生活污水间歇排放和太阳能能量密度昼夜变化特征,模拟光伏间歇曝气两级SBR处理农村污水,将聚磷菌(PAOs)和硝化菌分开控制在2个反应器中生长,分别命名为厌氧(缺氧)/好氧SBR(A/OSBR)和硝化SBR(N-SBR)。考察进水时间和回流对系统脱氮除磷效果的影响以及单个运行周期内污染物、溶解氧(DO)、氧化还原电位(ORP)和pH变化规律。结果表明,当进水时间为60 min和5 min,系统对TP的去除率分别为20.6%和56.5%;N-SBR出水与生活污水按1:2比例进入A/OSBR中,系统对TN、TP的去除率分别为57%和30.6%;N-SBR具有稳定的硝化效果,NH4+-N的去除率均能达到90%以上。DO和pH曲线的突跃点与反应终点保持一致,可将其作为实时控制参数。
  • 加载中
  • [1] 何文远, 杨海真. 城市污水脱氮除磷工艺的比较分析. 华中科技大学学报(城市科学版), 2003, 20(1): 85-87 He Wenyuan, Yang Haizhen. Analysis on processes of nitrogen and phosphorus removal for municipal sewage. Journal of Huazhong University of Science and Technology(Urban Science Edition), 2003, 20(1): 85-87(in Chinese)
    [2] 罗固源, 罗宁, 吉芳英, 等. 新型双泥生物反硝化除磷脱氮工艺. 中国给水排水, 2002, 18(9): 4-7 Luo Guyuan, Luo Ning, Ji Fangying, et al. New biological denitrification process with two-sludge for nitrogen and phosphorus removal. China Water & Wastewater, 2002, 18(9): 4-7(in Chinese)
    [3] Zeng Wei, Peng Yongzhen, Wang Shuying. A two-stage SBR process for removal of organic substrate and nitrogen via nitrite-type nitrification-denitrification. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 2004, 39(8): 2229-2239
    [4] Kuba T., Van Loosdrecht M. C. M., Heijnen J. J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system. Water Research, 1996, 30(7): 1702-1710
    [5] Merzouki M., Bernet N., Delgenès J. P., et al. Biological denitrifying phosphorus removal in SBR: Effect of added nitrate concentration and sludge retention time. Water Science and Technology, 2001, 43(3): 191-194
    [6] 蒋薇薇. 太阳能在农村生活污水处理中的应用. 环境科学与技术, 2011, 34(6G): 194-196, 370 Jiang Weiwei. Application of solar energy in rural sewage treatment. Environmental Science & Technology, 2011, 34(6G): 194-196, 370(in Chinese)
    [7] 韩昌福, 刘俊新, 梁瀚文, 等. 利用太阳能驱动的一体化氧化沟的运行方式. 环境工程学报, 2013, 7(6): 2001-2005 Han Changfu, Liu Junxin, Liang Hanwen, et al. Operation modes of integrated oxidation ditch utilizing solar energy as power for treatment of rural wastewater. Chinese Journal of Environmental Engineering, 2013, 7(6): 2001-2005(in Chinese)
    [8] 马方曙, 周北海, 李玲, 等. 光伏技术在村落生活污水处理中的应用. 给水排水, 2012, 38(S1): 150-154 Ma Fangshu, Zhou Beihai, Li Ling, et al. Application of photovoltaic technology to rural sewage treatment. Water & Wastewater Engineering, 2012, 38(S1): 150-154(in Chinese)
    [9] 马方曙, 周北海, 秦燕, 等. 模拟光伏间歇曝气SBR硝化特性. 环境科学研究, 2014, 27(6): 649-655 Ma Fangshu, Zhou Beihai, Qin Yan, et al. Nitrification performance of a novel SBR based on stimulating photovoltaic intermittent aeration. Research of Environmental Sciences, 2014, 27(6): 649-655(in Chinese)
    [10] Rodrigues A. C., Brito A. G., Melo L. F. Posttreatment of a brewery wastewater using a sequencing batch reactor. Water Environment Research, 2001, 73(1): 45-51
    [11] 赵耘挚, 刘振鸿. SBR工艺脱氮除磷研究进展. 中国给水排水, 2003, 19(3): 33-36 Zhao Yunzhi, Liu Zhenhong. Development of SBR process in removing nitrogen and phosphorus. China Water & Wastewater, 2003, 19(3): 33-36(in Chinese)
    [12] Francesco V., Mario B., Serena F., et al. Feed frequency in a sequencing batch reactor strongly affects the production of polyhydroxyalkanoates(PHAs) from volatile fatty acids. New Biotechnology, 2014, 31(4): 264-275
    [13] 胡安辉, 郑平, 金仁村. 缺氧胁迫影响硝化污泥活性的机理. 化工学报, 2007, 58(10): 2587-2594 Hu Anhui, Zheng Ping, Jin Rencun. Mechanism of effect of anoxic stress on nitrification. Journal of Chemical Industry and Engineering, 2007, 58(10): 2587-2594(in Chinese)
    [14] 龙北生, 刘红波, 肖国拾, 等. 两级SBR工艺去除磷、氮及有机物效能分析. 环境科学, 2009, 30(9): 2609-2614 Long Beisheng, Liu Hongbo, Xiao Guoshi, et al. Efficiency analysis of two-stage SBR for phosphorus nitrogen and organic substrate removal. Environmental Science, 2009, 30(9): 2609-2614(in Chinese)
    [15] Peng Zhaoxu, Peng Yongzhen, Gui Lijuan, et al. Competition for single carbon source between denitrification and phosphorus release in sludge under anoxic condition. Chinese Journal of Chemical Engineering, 2010, 18(3): 472-477
  • 加载中
计量
  • 文章访问数:  1843
  • HTML全文浏览数:  1216
  • PDF下载数:  613
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-08-31
  • 刊出日期:  2015-11-18
秦燕, 周北海, 马方曙. 模拟光伏间歇曝气两级SBR的脱氮除磷效果[J]. 环境工程学报, 2015, 9(11): 5219-5224. doi: 10.12030/j.cjee.20151114
引用本文: 秦燕, 周北海, 马方曙. 模拟光伏间歇曝气两级SBR的脱氮除磷效果[J]. 环境工程学报, 2015, 9(11): 5219-5224. doi: 10.12030/j.cjee.20151114
Qin Yan, Zhou Beihai, Ma Fangshu. Simulating photovoltaic intermittent aeration two-stage sequence batch reactor(SBR) system for nitrogen and phosphorus removal[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5219-5224. doi: 10.12030/j.cjee.20151114
Citation: Qin Yan, Zhou Beihai, Ma Fangshu. Simulating photovoltaic intermittent aeration two-stage sequence batch reactor(SBR) system for nitrogen and phosphorus removal[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5219-5224. doi: 10.12030/j.cjee.20151114

模拟光伏间歇曝气两级SBR的脱氮除磷效果

  • 1. 北京科技大学土木与环境工程学院, 北京 100083
基金项目:

国家"水体污染控制与治理"科技重大专项(2008ZX07105-002-01)

摘要: 基于农村生活污水间歇排放和太阳能能量密度昼夜变化特征,模拟光伏间歇曝气两级SBR处理农村污水,将聚磷菌(PAOs)和硝化菌分开控制在2个反应器中生长,分别命名为厌氧(缺氧)/好氧SBR(A/OSBR)和硝化SBR(N-SBR)。考察进水时间和回流对系统脱氮除磷效果的影响以及单个运行周期内污染物、溶解氧(DO)、氧化还原电位(ORP)和pH变化规律。结果表明,当进水时间为60 min和5 min,系统对TP的去除率分别为20.6%和56.5%;N-SBR出水与生活污水按1:2比例进入A/OSBR中,系统对TN、TP的去除率分别为57%和30.6%;N-SBR具有稳定的硝化效果,NH4+-N的去除率均能达到90%以上。DO和pH曲线的突跃点与反应终点保持一致,可将其作为实时控制参数。

English Abstract

参考文献 (15)

返回顶部

目录

/

返回文章
返回