[1]
|
任源, 韦朝海, 吴超飞, 等. 焦化废水水质组成及其环境学与生物学特性分析[J]. 环境科学学报, 2007, 27(7): 1094-1100
|
[2]
|
WANG Jianlong, QUAN Xiangchun, WU Libo, et al. Bioaugmentation as a tool to enhance the removal of refractory compound in coke plant wastewater[J]. Process Biochemistry, 2002, 38(5): 777-781
|
[3]
|
ZHANG Min, TAY J H, QIAN Yi, et al. Coke plant wastewater treatment by fixed biofilm system for COD and NH3-N removal[J]. Water Research, 1998, 32(2): 519-527
|
[4]
|
何苗, 张晓健, 瞿福平, 等. 焦化废水中芳香族有机物及杂环化合物在活性污泥法处理中的去除特性[J]. 中国给水排水, 1997, 13(1): 14-17
|
[5]
|
胡记杰, 肖俊霞, 任源, 等. 焦化废水原水中有机污染物的活性炭吸附过程解析[J]. 环境科学, 2008, 29(6): 1567-1571
|
[6]
|
ZHANG Min, TAY J H, QIAN Yi, et al. Comparison between anaerobic-anoxic-oxic and anoxic-oxic systems for coke plant wastewater treatment[J]. Journal of Environmental Engineering, 1997, 123(9): 876-883
|
[7]
|
LI Y M, GU G W, ZHAO J F, et al. Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen[J]. Chemosphere, 2003, 52(6): 997-1005
|
[8]
|
KEPA U, STANCZYK-MAZANEK E, STEPNIAK L. The use of the advanced oxidation process in the ozone + hydrogen peroxide system for the removal of cyanide from water[J]. Desalination, 2008, 223(1): 187-193
|
[9]
|
ZHU Xiuping, NI Jinren, LAI Ppeng. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes[J]. Water Research, 2009, 43(17): 4347-4355
|
[10]
|
ZHAO Lei, SUN Zhizhong, MA Jun, et al. Enhancement mechanism of heterogeneous catalytic ozonation by cordierite-supported copper for the degradation of nitrobenzene in aqueous solution[J]. Environmental Science & Technology, 2009, 43(6): 2047-2053
|
[11]
|
XING Shengtao, HU Chun, QU Jiuhui, et al. Characterization and reactivity of MnOx supported on mesoporous zirconia for herbicide 2,4-D mineralization with ozone[J]. Environmental Science & Technology, 2008, 42(9): 3363-3368
|
[12]
|
姚建华, 魏宏斌, 陈良才, 等. 臭氧/生物活性炭工艺深度处理焦化废水中试[J]. 中国给水排水, 2010, 26(5): 109-111
|
[13]
|
CHANG E E, HSING H J, CHIANG P C, et al. The chemical and biological characteristics of coke-oven wastewater by ozonation[J]. Journal of Hazardous Materials, 2008, 156(1/2/3): 560-567
|
[14]
|
HOIGNÉ J, BADER H. Rate constants of reactions of ozone with organic and inorganic compounds in water—Ⅱ: Dissociating organic compounds[J]. Water Research, 1983, 17(2): 185-194
|
[15]
|
HOIGNÉ J, BADER H. Rate constants of reactions of ozone with organic and inorganic compounds in water—I: Non-dissociating organic compounds[J]. Water Research, 1983, 17(2): 173-183
|
[16]
|
WILLIAMSON D G, CVETANOVIC R J. Rates of ozone-paraffin reactions in carbon tetrachloride solution[J]. Journal of the American Chemical Society, 1970, 92(10): 2949-2952
|
[17]
|
郑俊, 毛异, 宁靓, 等. 焦化废水生化处理后有机物的臭氧氧化降解与转化[J]. 中国给水排水, 2011, 27(21): 72-75
|
[18]
|
LAI Peng, ZHAO Huazhang, YE Zhengfang, et al. Assessing the effectiveness of treating coking effluents using anaerobic and aerobic biofilms[J]. Process Biochemistry, 2008, 43(3): 229-237
|
[19]
|
LAI Peng, ZHAO Huazhang, WANG Chao, et al. Advanced treatment of coking wastewater by coagulation and zero-valent iron processes[J]. Journal of Hazardous Materials, 2007, 147(1/2): 232-239
|
[20]
|
DUGUET J P, DUSSERT B, MALLEVIALLE J, et al. Polymerization effects of ozone: Applications to the removal of phenolic compounds from industrial wastewaters[J]. Water Science and Technology, 1987, 19(5/6): 919-930
|
[21]
|
CHROSTOWSKI P C, DIETRICH A M, SUFFET I H. Ozone and oxygen induced oxidative coupling of aqueous phenolics[J]. Water Research, 1983, 17(11): 1627-1633
|
[22]
|
HSU Y C, YANG H C, CHEN J H. The enhancement of the biodegradability of phenolic solution using preozonation based on high ozone utilization[J]. Chemosphere, 2004, 56(2): 149-158
|