焦化废水臭氧催化氧化过程的污染物降解特征

邢林林, 张景志, 姜安平, 王凯, 彭永臻, 曹宏斌. 焦化废水臭氧催化氧化过程的污染物降解特征[J]. 环境工程学报, 2017, 11(4): 2001-2006. doi: 10.12030/j.cjee.201510144
引用本文: 邢林林, 张景志, 姜安平, 王凯, 彭永臻, 曹宏斌. 焦化废水臭氧催化氧化过程的污染物降解特征[J]. 环境工程学报, 2017, 11(4): 2001-2006. doi: 10.12030/j.cjee.201510144
XING Linlin, ZHANG Jingzhi, JIANG Anping, WANG Kai, PENG Yongzhen, CAO Hongbin. Characteristics of pollutants degradation during catalytic ozonation of coking wastewater[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 2001-2006. doi: 10.12030/j.cjee.201510144
Citation: XING Linlin, ZHANG Jingzhi, JIANG Anping, WANG Kai, PENG Yongzhen, CAO Hongbin. Characteristics of pollutants degradation during catalytic ozonation of coking wastewater[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 2001-2006. doi: 10.12030/j.cjee.201510144

焦化废水臭氧催化氧化过程的污染物降解特征

  • 基金项目:

    国家水体污染控制与治理科技重大专项(2014ZX07211-001)

  • 中图分类号: X703.1

Characteristics of pollutants degradation during catalytic ozonation of coking wastewater

  • Fund Project:
  • 摘要: 为了考察焦化废水臭氧催化氧化深度处理过程中污染物的降解特征,对处理过程中的废水进行了COD、TOC、BOD、紫外可见光谱、高效液相色谱、气相色谱-质谱联用(GC-MS)和凝胶色谱等多种分析。结果表明:经臭氧催化氧化处理后,废水的COD、TOC和UV254均降低,降低速度大小为UV254 >COD >TOC;臭氧催化氧化可提高废水的可生化性,但氧化时间进一步延长,可生化性反而降低;液相色谱表明非极性物质优先得到去除;凝胶色谱表明分子量较小的物质优先去除;GC-MS结果表明焦化废水混凝出水中主要成分为苯酚类、杂环化合物、多环芳烃及其衍生物,臭氧催化氧化处理后这些化合物都得到有效降解。
  • 加载中
  • [1] 任源, 韦朝海, 吴超飞, 等. 焦化废水水质组成及其环境学与生物学特性分析[J]. 环境科学学报, 2007, 27(7): 1094-1100
    [2] WANG Jianlong, QUAN Xiangchun, WU Libo, et al. Bioaugmentation as a tool to enhance the removal of refractory compound in coke plant wastewater[J]. Process Biochemistry, 2002, 38(5): 777-781
    [3] ZHANG Min, TAY J H, QIAN Yi, et al. Coke plant wastewater treatment by fixed biofilm system for COD and NH3-N removal[J]. Water Research, 1998, 32(2): 519-527
    [4] 何苗, 张晓健, 瞿福平, 等. 焦化废水中芳香族有机物及杂环化合物在活性污泥法处理中的去除特性[J]. 中国给水排水, 1997, 13(1): 14-17
    [5] 胡记杰, 肖俊霞, 任源, 等. 焦化废水原水中有机污染物的活性炭吸附过程解析[J]. 环境科学, 2008, 29(6): 1567-1571
    [6] ZHANG Min, TAY J H, QIAN Yi, et al. Comparison between anaerobic-anoxic-oxic and anoxic-oxic systems for coke plant wastewater treatment[J]. Journal of Environmental Engineering, 1997, 123(9): 876-883
    [7] LI Y M, GU G W, ZHAO J F, et al. Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen[J]. Chemosphere, 2003, 52(6): 997-1005
    [8] KEPA U, STANCZYK-MAZANEK E, STEPNIAK L. The use of the advanced oxidation process in the ozone + hydrogen peroxide system for the removal of cyanide from water[J]. Desalination, 2008, 223(1): 187-193
    [9] ZHU Xiuping, NI Jinren, LAI Ppeng. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes[J]. Water Research, 2009, 43(17): 4347-4355
    [10] ZHAO Lei, SUN Zhizhong, MA Jun, et al. Enhancement mechanism of heterogeneous catalytic ozonation by cordierite-supported copper for the degradation of nitrobenzene in aqueous solution[J]. Environmental Science & Technology, 2009, 43(6): 2047-2053
    [11] XING Shengtao, HU Chun, QU Jiuhui, et al. Characterization and reactivity of MnOx supported on mesoporous zirconia for herbicide 2,4-D mineralization with ozone[J]. Environmental Science & Technology, 2008, 42(9): 3363-3368
    [12] 姚建华, 魏宏斌, 陈良才, 等. 臭氧/生物活性炭工艺深度处理焦化废水中试[J]. 中国给水排水, 2010, 26(5): 109-111
    [13] CHANG E E, HSING H J, CHIANG P C, et al. The chemical and biological characteristics of coke-oven wastewater by ozonation[J]. Journal of Hazardous Materials, 2008, 156(1/2/3): 560-567
    [14] HOIGNÉ J, BADER H. Rate constants of reactions of ozone with organic and inorganic compounds in water—Ⅱ: Dissociating organic compounds[J]. Water Research, 1983, 17(2): 185-194
    [15] HOIGNÉ J, BADER H. Rate constants of reactions of ozone with organic and inorganic compounds in water—I: Non-dissociating organic compounds[J]. Water Research, 1983, 17(2): 173-183
    [16] WILLIAMSON D G, CVETANOVIC R J. Rates of ozone-paraffin reactions in carbon tetrachloride solution[J]. Journal of the American Chemical Society, 1970, 92(10): 2949-2952
    [17] 郑俊, 毛异, 宁靓, 等. 焦化废水生化处理后有机物的臭氧氧化降解与转化[J]. 中国给水排水, 2011, 27(21): 72-75
    [18] LAI Peng, ZHAO Huazhang, YE Zhengfang, et al. Assessing the effectiveness of treating coking effluents using anaerobic and aerobic biofilms[J]. Process Biochemistry, 2008, 43(3): 229-237
    [19] LAI Peng, ZHAO Huazhang, WANG Chao, et al. Advanced treatment of coking wastewater by coagulation and zero-valent iron processes[J]. Journal of Hazardous Materials, 2007, 147(1/2): 232-239
    [20] DUGUET J P, DUSSERT B, MALLEVIALLE J, et al. Polymerization effects of ozone: Applications to the removal of phenolic compounds from industrial wastewaters[J]. Water Science and Technology, 1987, 19(5/6): 919-930
    [21] CHROSTOWSKI P C, DIETRICH A M, SUFFET I H. Ozone and oxygen induced oxidative coupling of aqueous phenolics[J]. Water Research, 1983, 17(11): 1627-1633
    [22] HSU Y C, YANG H C, CHEN J H. The enhancement of the biodegradability of phenolic solution using preozonation based on high ozone utilization[J]. Chemosphere, 2004, 56(2): 149-158
  • 加载中
计量
  • 文章访问数:  1968
  • HTML全文浏览数:  1644
  • PDF下载数:  505
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-12-08
  • 刊出日期:  2017-04-22
邢林林, 张景志, 姜安平, 王凯, 彭永臻, 曹宏斌. 焦化废水臭氧催化氧化过程的污染物降解特征[J]. 环境工程学报, 2017, 11(4): 2001-2006. doi: 10.12030/j.cjee.201510144
引用本文: 邢林林, 张景志, 姜安平, 王凯, 彭永臻, 曹宏斌. 焦化废水臭氧催化氧化过程的污染物降解特征[J]. 环境工程学报, 2017, 11(4): 2001-2006. doi: 10.12030/j.cjee.201510144
XING Linlin, ZHANG Jingzhi, JIANG Anping, WANG Kai, PENG Yongzhen, CAO Hongbin. Characteristics of pollutants degradation during catalytic ozonation of coking wastewater[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 2001-2006. doi: 10.12030/j.cjee.201510144
Citation: XING Linlin, ZHANG Jingzhi, JIANG Anping, WANG Kai, PENG Yongzhen, CAO Hongbin. Characteristics of pollutants degradation during catalytic ozonation of coking wastewater[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 2001-2006. doi: 10.12030/j.cjee.201510144

焦化废水臭氧催化氧化过程的污染物降解特征

  • 1.  北京工业大学环境与能源学院, 北京 100124
  • 2.  桑德集团有限公司, 北京 101102
  • 3.  清华大学环境学院, 北京 100084
  • 4.  中国科学院过程工程研究所, 北京 100190
基金项目:

国家水体污染控制与治理科技重大专项(2014ZX07211-001)

摘要: 为了考察焦化废水臭氧催化氧化深度处理过程中污染物的降解特征,对处理过程中的废水进行了COD、TOC、BOD、紫外可见光谱、高效液相色谱、气相色谱-质谱联用(GC-MS)和凝胶色谱等多种分析。结果表明:经臭氧催化氧化处理后,废水的COD、TOC和UV254均降低,降低速度大小为UV254 >COD >TOC;臭氧催化氧化可提高废水的可生化性,但氧化时间进一步延长,可生化性反而降低;液相色谱表明非极性物质优先得到去除;凝胶色谱表明分子量较小的物质优先去除;GC-MS结果表明焦化废水混凝出水中主要成分为苯酚类、杂环化合物、多环芳烃及其衍生物,臭氧催化氧化处理后这些化合物都得到有效降解。

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回