流化床造粒法回收猪场废水中氮磷:鸟粪石颗粒的形貌与组成

邓玉君, 叶志隆, 叶欣, 楼耀尹, 宋子龙, 潘松青, 陈少华. 流化床造粒法回收猪场废水中氮磷:鸟粪石颗粒的形貌与组成[J]. 环境工程学报, 2016, 10(6): 2933-2939. doi: 10.12030/j.cjee.201501009
引用本文: 邓玉君, 叶志隆, 叶欣, 楼耀尹, 宋子龙, 潘松青, 陈少华. 流化床造粒法回收猪场废水中氮磷:鸟粪石颗粒的形貌与组成[J]. 环境工程学报, 2016, 10(6): 2933-2939. doi: 10.12030/j.cjee.201501009
Deng Yujun, Ye Zhilong, Ye Xin, Lou Yaoyin, Song Zilong, Pan Songqing, Chen Shaohua. Phosphorus recovery from swine wastewater by struvite granulation in fluidized bed: morphology and composition of granules[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2933-2939. doi: 10.12030/j.cjee.201501009
Citation: Deng Yujun, Ye Zhilong, Ye Xin, Lou Yaoyin, Song Zilong, Pan Songqing, Chen Shaohua. Phosphorus recovery from swine wastewater by struvite granulation in fluidized bed: morphology and composition of granules[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2933-2939. doi: 10.12030/j.cjee.201501009

流化床造粒法回收猪场废水中氮磷:鸟粪石颗粒的形貌与组成

  • 基金项目:

    国家高技术研究发展计划(863)项目(2011AA060902)

    厦门市科技计划(3502Z20132016)

  • 中图分类号: X703

Phosphorus recovery from swine wastewater by struvite granulation in fluidized bed: morphology and composition of granules

  • Fund Project:
  • 摘要: 针对现有流化床鸟粪石造粒法回收废水中氮磷时缺乏有效的方法定量描述颗粒的形貌及对应的组分含量,综合图像法、FTIR、XRD、元素组成分析和物料衡算等方法,分析了分段式流化床不同区域的颗粒形貌及对应的组分情况。研究结果表明,流化床不同区域内上升流速分别为15.0、30.6和60.0 mm/s,对应鸟粪石颗粒平均粒度分别为703、963和1 747 μm,相应的颗粒形貌为絮团、团聚式颗粒和包层式颗粒。颗粒的主要成分为鸟粪石(MgNH4PO4·6H2O,MAP)、钾型鸟粪石(MgKPO4·6H2O,MKP)、无定型磷酸钙(Ca3(PO4)2·xH2O,ACP)其中MAP含量均大于92%,ACP 1.26%~1.75%,MKP含量为3.75%~3.91%,有机物含量低于0.4%。回收的颗粒中Cr、As、Cd和Pb等重金属含量低于现行的化肥重金属控制标准(GB/T 23349-2009)限值,有效降低了重金属污染的风险,提高了回收颗粒的品质。
  • 加载中
  • [1] 张昌爱, 徐振, 李彦, 等. 畜禽养殖污染防治典型工程的综合效益评价. 环境工程学报,2014, 8(10): 4555-4560 Zhang Chang'ai, Xu Zhen, Li Yan, et al. Comprehensive evaluation on several typical pollution control engineerings of livestock and poultry breeding. Chinese Journal of Environmental Engineering,2014, 8(10): 4555-4560(in Chinese)
    [2] 李咏梅, 刘鸣燕, 袁志文. 鸟粪石结晶成粒技术研究进展. 环境污染与防治,2011, 33(6): 71-75 Li Yongmei, Liu Mingyan, Yuan Zhiwen. Review of the struvite crystallization technology. Environmental Pollution & Control,2011, 33(6): 71-75(in Chinese)
    [3] Doyle J. D., Philp R., Churchley J., et al. Analysis of struvite precipitation in real and synthetic liquors. Process Safety and Environmental Protection,2000, 78(6): 480-488
    [4] Doino V., Mozet K., Muhr H., et al. Study on struvite precipitation in a mechanically stirring fluidized bed reactor. Chemical Engineering Transactions,2011, 24: 679-684
    [5] Iqbal M., Bhuiyan H., Mavinic D. S. Assessing struvite precipitation in a pilot-scale fluidized bed crystallizer. Environmental Technology,2008, 29(11): 1157-1167
    [6] Mavinic D. S., Koch F. A., Huang H., et al. Phosphorus recovery from anaerobic digester supernatants using a pilot-scale struvite crystallization process. Journal of Environmental Engineering and Science,2007, 6(5): 561-571
    [7] Su C. C., Abarca R. R. M., De Luna M. D. G., et al. Phosphate recovery from fluidized-bed wastewater by struvite crystallization technology. Journal of the Taiwan Institute of Chemical Engineers,2014, 45(5): 2395-2402
    [8] Fattah K. P., Mavinic D. S., Koch F. A., et al. Determining the feasibility of phosphorus recovery as struvite from filter press centrate in a secondary wastewater treatment plant. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering,2008, 43(7): 756-764
    [9] Britton A., Koch F. A., Mavinic D. S., et al. Pilot-scale struvite recovery from anaerobic digester supernatant at an enhanced biological phosphorus removal wastewater treatment plant. Journal of Environmental Engineering and Science,2005, 4(4): 265-277
    [10] Fattah K. P., Mavinic D. S., Koch F. A. Influence of process parameters on the characteristics of struvite pellets. Journal of Environment Engineering,2012, 138(12): 1200-1209
    [11] Adnan A., Mavinic D. S., Koch F. A. Pilot-scale study of phosphorus recovery through struvite crystallization-examining the process feasibility. Journal of Environmental Engineering and Science,2003, 2(5): 315-324
    [12] Adnan A., Dastur M., Mavinic D. S., et al. Preliminary investigation into factors affecting controlled struvite crystallization at the bench scale. Journal of Environmental Engineering and Science,2004, 3(3): 195-202
    [13] Ye Zhilong, Shen Yin, Ye Xin, et al. Phosphorus recovery from wastewater by struvite crystallization: Property of aggregates. Journal of Environmental Sciences,2014, 26(5): 991-1000
    [14] Li Jidong, Li Yubao, Zhang Li, et al. Composition of calcium deficient Na-containing carbonate hydroxyapatite modified with Cu(II) and Zn(II) ions. Applied Surface Science,2008, 254(9): 2844-2850
    [15] Chékir-Mzali J., Horchani-Naifer K., Férid M. Structural study and spectroscopic properties of NH4Er(PO3)4. Journal of Alloys and Compounds,2014, 612: 372-379
    [16] Gustafsson J. P., Renman A., Renman G., et al. Phosphate removal by mineral-based sorbents used in filters for small-scale wastewater treatment. Water Research,2008, 42(1-2): 189-197
    [17] Ji Junfeng, Ge Yun, Balsam W., et al. Rapid identification of dolomite using a Fourier Transform Infrared Spectrophotometer (FTIR) a fast method for identifying Heinrich events in IODP Site U1308. Marine Geology,2009, 258(1-4): 60-68
    [18] Aramendía M. A., Avilés Y., Benítez J. A., et al. Comparative study of Mg/Al and Mg/Ga layered double hydroxides. Microporous and Mesoporous Materials,1999, 29(3): 319-328
    [19] 鲍小丹, 叶志隆, 马建华, 等. 鸟粪石法回收养猪废水中磷时pH对沉淀物组分的影响. 环境科学,2011, 32(9): 2598-2603 Bao Xiaodan, Ye Zhilong, Ma Jianhua, et al. Effect of pH on precipitate composition during phosphorus recovery as struvite from swine wastewater. Environmental Science,2011, 32(9): 2598-2603(in Chinese)
    [20] 沈颖, 叶志隆, 叶欣, 等. 鸟粪石法回收养猪废水中氮磷时产物的组分与性质研究. 环境科学学报,2013, 33(1): 92-97 Shen Ying, Ye Zhilong, Ye Xin, et al. Components and particle properties of products recovered from swine wastewater by struvite recovery. Acta Scientiae Circumstantiae,2013, 33(1): 92-97(in Chinese)
    [21] Warmadewanthi, Liu J. C. Recovery of phosphate and ammonium as struvite from semiconductor wastewater. Separation and Purification Technology,2009, 64(3): 368-373
    [22] Ye Zhilong, Chen Shaohua, Lu Min, et al. Recovering phosphorus as struvite from the digested swine wastewater with bittern as a magnesium source. Water Science and Technology,2011, 64(2): 334-340
    [23] Santinelli M., Eusebi A. L., Santini M., et al. Struvite crystallization for anaerobic digested Supernatants: Influence on the ammonia efficiency of the process variables and the chemicals dosage modality. Chemical Engineering Transactions,2013, 32: 2047-2052
    [24] Du Yanjun, Wei Mingli, Reddy K. R., et al. New phosphate-based binder for stabilization of soils contaminated with heavy metals: Leaching, strength and microstructure characterization. Journal of Environmental Management,2014, 146: 179-188
    [25] 沈颖. 鸟粪石法回收养猪废水中磷的镁源选择及经济型评价. 北京: 中国科学院大学硕士学位论文,2013 Shen Ying. Selection and economic assessment of various magnesium sources in phosphorus recovery from swine wastewater by struvite precipitation. Beijing: Master Dissertation of University of Chinese Academy of Sciences,2013(in Chinese)
    [26] Marsac R., Davranche M., Gruau G., et al. Metal loading effect on rare earth element binding to humic acid: Experimental and modelling evidence. Geochimica et Cosmochimica Acta,2010, 74(6): 1749-1761
    [27] Marsac R., Davranche M., Gruau G., et al. An improved description of the interactions between rare earth elements and humic acids by modeling: PHREEQC-Model VI coupling. Geochimica et Cosmochimica Acta,2011, 75(19): 5625-5637
    [28] Negm N. A., Ali H. E. Modification of heavy metal uptake efficiency by modified chitosan/anionic surfactant systems. Engineering in Life Sciences,2010, 10(3): 218-224
    [29] Yamamoto Y., Takahashi Y., Shimizu H. Systematic change in relative stabilities of REE-humic complexes at various metal loading levels. Geochemical Journal,2010, 44(1): 39-63
    [30] 刘广文. 造粒工艺与设备. 北京: 化学工业出版社,2011
    [31] 刘马林. 化工流化床技术在铀燃料循环工业中的应用. 化工进展,2013, 32(3): 508-514 Liu Malin. Review on application of fluidized bed technology in industry of uranium fuel cycle. Chemical Industry and Engineering Progress,2013, 32(3): 508-514(in Chinese)
    [32] 李松. 金精矿提金三相循环流化床先进控制系统的研究与应用. 上海: 东华大学硕士学位论文,2011 Li Song. Research and Application of the advanced control for extracting gold from gold concentrate with three-phase circulating fluidized bed. Shanghai: Master Dissertation of Donghua University,2011(in Chinese)
    [33] 张祖乐, 郑文艳, 杨宝玉. 流化床技术在铁合金工业上的应用. 铁合金,2012(5): 28-33 Zhang Zule, Zheng Wenyan, Yang Baoyu. Promising application of fluided bed technology in feffoalloy industry. Ferro-Alloys,2012(5): 28-33(in Chinese)
    [34] 宋雅琼. 基于吸附再生的生物造粒流化床机理研究. 西安: 西安建筑科技大学硕士学位论文,2013 Song Yaqiong. Mechanism study on fluidized-pellet-bed bioreactor based on adsorption regeneration. Xi'an: Master Dissertation of Xi'an University of Architecture and Technology,2013(in Chinese)
    [35] Witten T. A. Jr, Sander L. M. Diffusion-Limited aggregation, a kinetic critical phenomenon. Physical Review Letters,1981, 47(19): 1400-1403
    [36] Bensimon D., Shraiman B., Liang S. On the ballistic model of aggregation. Physics Letters A,1984, 102(5-6): 238-240
    [37] Meakin P., Family F. Structure and dynamics of reaction-limited aggregation. Physical Review A,1987, 36(11): 5498-5501
    [38] Ball R. C., Weitz D. A., Witten T. A., et al. Universal kinetics in reaction-limited aggregation. Physical Review Letters,1987, 58(3): 274-277
    [39] 倪晓棠, 张玉秀, 魏源送, 等. 微波及其组合工艺污泥预处理上清液中碳酸盐对磷回收的影响. 环境工程学报,2014, 8(11): 4913-4918 Ni Xiaotang, Zhang Yuxiu, Wei Yuansong, et al. Effect of carbonate on phosphorous recovery from sludge pretreated by microwave and its combined processes. Chinese Journal of Environmental Engineering,2014, 8(11): 4913-4918(in Chinese)
  • 加载中
计量
  • 文章访问数:  2627
  • HTML全文浏览数:  1949
  • PDF下载数:  837
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-02-14
  • 刊出日期:  2016-06-03
邓玉君, 叶志隆, 叶欣, 楼耀尹, 宋子龙, 潘松青, 陈少华. 流化床造粒法回收猪场废水中氮磷:鸟粪石颗粒的形貌与组成[J]. 环境工程学报, 2016, 10(6): 2933-2939. doi: 10.12030/j.cjee.201501009
引用本文: 邓玉君, 叶志隆, 叶欣, 楼耀尹, 宋子龙, 潘松青, 陈少华. 流化床造粒法回收猪场废水中氮磷:鸟粪石颗粒的形貌与组成[J]. 环境工程学报, 2016, 10(6): 2933-2939. doi: 10.12030/j.cjee.201501009
Deng Yujun, Ye Zhilong, Ye Xin, Lou Yaoyin, Song Zilong, Pan Songqing, Chen Shaohua. Phosphorus recovery from swine wastewater by struvite granulation in fluidized bed: morphology and composition of granules[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2933-2939. doi: 10.12030/j.cjee.201501009
Citation: Deng Yujun, Ye Zhilong, Ye Xin, Lou Yaoyin, Song Zilong, Pan Songqing, Chen Shaohua. Phosphorus recovery from swine wastewater by struvite granulation in fluidized bed: morphology and composition of granules[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2933-2939. doi: 10.12030/j.cjee.201501009

流化床造粒法回收猪场废水中氮磷:鸟粪石颗粒的形貌与组成

  • 1.  中国科学院城市污染物转化重点实验室, 厦门 361021
  • 2.  中国科学院城市环境研究所, 厦门 361021
  • 3.  福建师范大学环境科学与工程学院, 福州 364103
基金项目:

国家高技术研究发展计划(863)项目(2011AA060902)

厦门市科技计划(3502Z20132016)

摘要: 针对现有流化床鸟粪石造粒法回收废水中氮磷时缺乏有效的方法定量描述颗粒的形貌及对应的组分含量,综合图像法、FTIR、XRD、元素组成分析和物料衡算等方法,分析了分段式流化床不同区域的颗粒形貌及对应的组分情况。研究结果表明,流化床不同区域内上升流速分别为15.0、30.6和60.0 mm/s,对应鸟粪石颗粒平均粒度分别为703、963和1 747 μm,相应的颗粒形貌为絮团、团聚式颗粒和包层式颗粒。颗粒的主要成分为鸟粪石(MgNH4PO4·6H2O,MAP)、钾型鸟粪石(MgKPO4·6H2O,MKP)、无定型磷酸钙(Ca3(PO4)2·xH2O,ACP)其中MAP含量均大于92%,ACP 1.26%~1.75%,MKP含量为3.75%~3.91%,有机物含量低于0.4%。回收的颗粒中Cr、As、Cd和Pb等重金属含量低于现行的化肥重金属控制标准(GB/T 23349-2009)限值,有效降低了重金属污染的风险,提高了回收颗粒的品质。

English Abstract

参考文献 (39)

返回顶部

目录

/

返回文章
返回