Fe0/GAC-Fenton耦合技术深度处理垃圾渗滤液的效能

郑俊, 张德伟, 贺倩倩, 冯晓明, 沈亚锋, 黄河清. Fe0/GAC-Fenton耦合技术深度处理垃圾渗滤液的效能[J]. 环境工程学报, 2016, 10(5): 2427-2434. doi: 10.12030/j.cjee.201412219
引用本文: 郑俊, 张德伟, 贺倩倩, 冯晓明, 沈亚锋, 黄河清. Fe0/GAC-Fenton耦合技术深度处理垃圾渗滤液的效能[J]. 环境工程学报, 2016, 10(5): 2427-2434. doi: 10.12030/j.cjee.201412219
Zheng Jun, Zhang Dewei, He Qianqian, Feng Xiaoming, Shen Yafeng, Huang Heqing. Performance of advanced treatment of landfill leachate by Fe0/GAC coupling with Fenton[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2427-2434. doi: 10.12030/j.cjee.201412219
Citation: Zheng Jun, Zhang Dewei, He Qianqian, Feng Xiaoming, Shen Yafeng, Huang Heqing. Performance of advanced treatment of landfill leachate by Fe0/GAC coupling with Fenton[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2427-2434. doi: 10.12030/j.cjee.201412219

Fe0/GAC-Fenton耦合技术深度处理垃圾渗滤液的效能

  • 基金项目:

    安徽省科技攻关计划项目(1301041023)

  • 中图分类号: X703

Performance of advanced treatment of landfill leachate by Fe0/GAC coupling with Fenton

  • Fund Project:
  • 摘要: 采用Fe0/GAC与H2O2构建微电解与Fenton异相协同降解体系,通过自行开发设计的新型反应器研究各因素对Fe0/GAC-Fenton耦合技术深度处理垃圾渗滤液效能的影响,应用紫外光谱探讨垃圾渗滤液中污染物的降解规律。结果表明,Fe0/GAC-Fenton耦合技术处理废水具有较好的协同降解作用,相对于传统技术可以明显提高废水的处理效能。各因素对COD去除效果的影响从大到小为:Fe0用量 >HRT>mFe0/mGAC >c(H2O2) >pH。通过单因素优化实验确定其最优反应条件:pH=3.5、mFe0=143 g/L、mFe0/mGAC为3:1、HRT为80 min、30%H2O2为1.5 mL/L;该条件下COD由209 mg/L降低到53 mg/L,去除率达74.6%,出水水质达到《生活垃圾填埋污染控制标准》(GB 16889-2008)一级排放标准。紫外光谱显示,经该耦合技术深度处理后,废水中包含共轭双键、—NH—和苯环等结构的大分子有机物被降解。
  • 加载中
  • [1] Ding Aizhong, Zhang Zonghu, Fu Jiamo, et al. Biological control of leachate from municipal landfills. Chemosphere, 2001, 44(1): 1-8
    [2] Ye Jiexu, Mu Yongjie, Cheng Xiang, et al. Treatment of fresh leachate with high-strength organics and calcium from municipal solid waste incineration plant using UASB reactor. Bioresource Technology, 2011, 102(9): 5498-5503
    [3] Wang Xiaojun, Han Jijun, Chen Zhiwei, et al. Combined processes of two-stage Fenton-biological anaerobic filter-biological aerated filter for advanced treatment of landfill leachate. Waste Management, 2012, 32(12): 2401-2405
    [4] Wiszniowski J., Robert D., Surmacz-Gorska J., et al. Landfill leachate treatment methods: A review. Environmental Chemistry Letter, 2006, 4(1): 51-61
    [5] 田兆龙, 汪晓军, 黄志聪. 间歇式曝气生物滤池对焚烧垃圾渗滤液深度脱氮的研究. 环境科学学报, 2013, 33(5): 1244-1248 Tian Zhaolong, Wang Xiaojun, Huang Zhicong. Nitrogen removal for waste incineration leachate by intermittent aerated biological filter. Acta Scientiae Circumstantiae, 2013, 33(5): 1244-1248(in Chinese)
    [6] Luo Yu, Shi Yixiang, Li Wenying, et al. Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide. Energy, 2014, 70: 420-434
    [7] Li Xinyang, Wang Chengwen, Qian Yi, et al. Simultaneous removal of chemical oxygen demand, turbidity and hardness from biologically treated citric acid wastewater by electrochemical oxidation for reuse. Separation and Purification Technology, 2013, 107: 281-288
    [8] 蒋胜韬, 祝建中, 管玉江, 等. 非均相类Fenton法降解硝基苯化工废水的效能及其机制. 化工学报, 2014, 65(4): 1488-1494 Jiang Shengtao, Zhu Jianzhong, Guan Yujiang, et al. Performance of heterogeneous Fenton-like system for degradation of nitrobenzene-containing wastewater. CIESC Journal, 2014, 65(4): 1488-1494(in Chinese)
    [9] Liu Wenwu, Tu Xueyan, Wang Xiuping, et al. Pretreatment of coking wastewater by acid out, micro-electrolysis process with in situ electrochemical peroxidation reaction. Chemical Engineering Journal, 2012, 200-202: 720-728
    [10] Lim S. J., Fox P. A kinetic analysis and experimental validation of an integrated system of anaerobic filter and biological aerated filter. Bioresource Technology, 2011, 102(22): 10371-10376
    [11] 谢武, 潘琼, 王金菊. 催化型微电解对垃圾渗滤液深度处理的研究. 西南农业学报, 2011, 24(5): 1943-1947 Xie Wu, Pan Qiong, Wang Jinju. Research for advanced treatment to landfill leachate by catalyzed micro-electrolysis. Southwest China Journal of Agricultural Sciences, 2011, 24(5): 1943-1947(in Chinese)
    [12] Wu Xiaogang, Zhang Hui, Li Yanli, et al. Factorial design analysis for COD removal from landfill leachate by photoassisted Fered-Fenton process. Environmental Science and Pollution Research, 2014, 21(14): 8595-8602
    [13] Li Jun, Wang Lei, Peng Feng, et al. Advanced treatment of landfill leachate by Fenton oxidation-coagulation process. Journal of Beijing University of Technology, 2008, 34(3): 304-309
    [14] Cheibub A. F., Campos J. C., Da Fonseca, et al. Removal of COD from a stabilized landfill leachate by physicochemical and advanced oxidative process. Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances and Environmental Engineering, 2014, 49(14): 1718-1726
    [15] 吴彦瑜, 周少奇, 覃芳慧, 等. Fenton试剂对垃圾渗滤液中腐殖质的氧化/混凝作用. 化工学报, 2009, 60(10): 2609-2613 Wu Yanyu, Zhou Shaoqi, Qin Fanghui, et al. Oxidation and coagulation of humic substances from landfill leachate by Fenton's reagent. CIESC Journal, 2009, 60(10): 2609-2613(in Chinese)
    [16] Zhang Guoliang, Qin Lei, Meng Qin, et al. Aerobic SMBR/reverse osmosis system enhanced by Fenton oxidation for advanced treatment of old municipal landfill leachate. Bioresource Technology, 2013, 142: 261-268
    [17] Lan Shanhong, Wu Xiuwen, Wang Yueting. Treatment of mid-stage pulping effluent using the combined process of microelectrolysis and Fenton oxidation-coagulation. Applied Mechanics and Materials, 2013, 295-298: 2001-2010
    [18] 朱兆连, 孙敏, 杨峰, 等. 微电解-Fenton氧化法去除垃圾渗滤液中有机物. 南京工业大学学报: 自然科学版, 2011, 33(6): 20-25 Zhu Zhaolian, Sun Min, Yang Feng, et al. Removal of organic pollutants in landfill leachate by microelectrolysis-Fenton process. Journal of Nanjing University of Technology: Natural Science Edition, 2011, 33(6): 20-25(in Chinese)
    [19] Ying Diwen, Xu Xinyan, Li Kan, et al. Design of a novel sequencing batch internal micro-electrolysis reactor for treating mature landfill leachate. Chemical Engineering Research and Design, 2012, 90(12): 2278-2286
    [20] 王烨, 蒋进元, 周岳溪, 等. Fenton法深度处理腈纶废水的特性. 环境科学研究, 2012, 25(8): 911-915 Wang Ye, Jiang Jinyuan, Zhou Yuexi, et al. Charactristics of Fenton process in advanced treatment of acrylic fiber wastewater. Research of Environmental Sciences, 2012, 25(8): 911-915(in Chinese)
    [21] 林光辉, 吴锦华, 李平, 等. 零价铁与双氧水异相Fenton降解活性艳橙X-GN. 环境工程学报, 2013, 7(3): 913-917 Lin Guanghui, Wu Jinhua, Li Ping, et al. Effective degradation of reactive brilliant orange X-GN by heterogeneous Fenton reaction using zero-valent iron and H2O2. Chinese Journal of Environmental Engineering, 2013, 7(3): 913-917(in Chinese)
    [22] De Laat J., Gallard H., Ancelin S., et al. Comparative study of the oxidation of atrazine and acetone by H2O2/UV, Fe(Ⅲ)/UV, Fe(Ⅲ)/H2O2/UV and Fe(Ⅱ) or Fe(Ⅲ)/H2O2. Chemosphere, 1999, 39(15): 2693-2706
    [23] Pignatello J. J., Oliveros E., MacKay A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Sciences and Technology, 2006, 36(1): 1-84
    [24] Zhou H., Smith D. W. Advanced technologies in water and wastewater treatment. Canadian Journal of Civil Engineering, 2002, 28(S1): 49-66
    [25] Lai Peng, Zhao Huazhang, Zeng Ming, et al. Study on treatment of coking wastewater by biofilm reactors combined with zero-valent iron process. Journal of Hazardous Materials, 2009, 162(2-3): 1423-1429
    [26] Lei Pengxiang, Chen Chuncheng, Yang Juan, et al. Degradation of dye pollutants by immobilized polyoxometalate with H2O2 under visible-light irradiation. Environmental Science & Technology, 2005, 39(21): 8466-8474
    [27] Badawy M. I., Ali M. E. M. Fenton's peroxidation and coagulation processes for the treatment of combined industrial and domestic wastewater. Journal of Hazardous Materials, 2006, 136(3): 961-966
    [28] Xu Lejin, Wang Jianlong. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. Journal of Hazardous Materials, 2011, 186(1): 256-264
    [29] Feng Jiyun, Hu Xijun, Yue P. L. Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst. Water Research, 2006, 40(4): 641-646
  • 加载中
计量
  • 文章访问数:  1404
  • HTML全文浏览数:  1044
  • PDF下载数:  524
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-01-12
  • 刊出日期:  2016-06-03

Fe0/GAC-Fenton耦合技术深度处理垃圾渗滤液的效能

  • 1.  安徽工业大学建筑工程学院, 马鞍山 243002
  • 2.  安徽华骐环保科技股份有限公司, 马鞍山 243061
  • 3.  安徽省曝气生物滤池工程技术研究中心, 马鞍山 243061
基金项目:

安徽省科技攻关计划项目(1301041023)

摘要: 采用Fe0/GAC与H2O2构建微电解与Fenton异相协同降解体系,通过自行开发设计的新型反应器研究各因素对Fe0/GAC-Fenton耦合技术深度处理垃圾渗滤液效能的影响,应用紫外光谱探讨垃圾渗滤液中污染物的降解规律。结果表明,Fe0/GAC-Fenton耦合技术处理废水具有较好的协同降解作用,相对于传统技术可以明显提高废水的处理效能。各因素对COD去除效果的影响从大到小为:Fe0用量 >HRT>mFe0/mGAC >c(H2O2) >pH。通过单因素优化实验确定其最优反应条件:pH=3.5、mFe0=143 g/L、mFe0/mGAC为3:1、HRT为80 min、30%H2O2为1.5 mL/L;该条件下COD由209 mg/L降低到53 mg/L,去除率达74.6%,出水水质达到《生活垃圾填埋污染控制标准》(GB 16889-2008)一级排放标准。紫外光谱显示,经该耦合技术深度处理后,废水中包含共轭双键、—NH—和苯环等结构的大分子有机物被降解。

English Abstract

参考文献 (29)

目录

/

返回文章
返回