2010 Volume 29 Issue 6
Article Contents

WU Zhijian, LIU Haining, ZHANG Huifang. RESEARCH PROGRESS ON MECHANISMS ABOUT THE EFFECT OF IONIC STRENGTH ON ADSORPTION[J]. Environmental Chemistry, 2010, 29(6): 997-1003.
Citation: WU Zhijian, LIU Haining, ZHANG Huifang. RESEARCH PROGRESS ON MECHANISMS ABOUT THE EFFECT OF IONIC STRENGTH ON ADSORPTION[J]. Environmental Chemistry, 2010, 29(6): 997-1003.

RESEARCH PROGRESS ON MECHANISMS ABOUT THE EFFECT OF IONIC STRENGTH ON ADSORPTION

  • Received Date: 24/12/2009
    Fund Project:
  • The effect of ionic strength on the adsorption at solid/liquid interface has been discussed based on the introduction of the hydration of molecules and ions, the Stern and classical triple-layer models at metal oxide/water solution interfaces, and inner and outer sphere surface complexes. Generally speaking, with the increase in ionic strength, the electrostatic interactions between adsorbents and adsorbates decrease, and the hydrophobic interactions increase, the complexation does not have any obvious changes. Electrolytes affect adsorption by ion exchange competition with adsorbate ions, by salting-in and salting-out effects on adsorbates, by changing adsorbate molecular size, and by forming ion pairs with adsorbates, etc.
  • 加载中
  • [1] Bourikas K, Kordulis C, Vakros J, et al. Adsorption of cobalt species on the interface, which is developed between aqueous solution and metal oxides used for the preparation of supported catalysts: a critical review[J]. Adv Colloid Interface, 2004, 110(3):97-120

    Google Scholar Pub Med

    [2] You L J, Wu Z J, Kim T, et al. Kinetics and thermodynamics of bromophenol blue adsorption by a mesoporous hybrid gel derived from tetraethoxysilane and bis(trimethoxysilyl)hexane[J]. J Colloid Interf Sci, 2006, 300(2):526-535

    Google Scholar Pub Med

    [3] Ye X S, Wu Z J, Li W, et al. Rubidium and cesium ion adsorption by an ammonium molybdophosphate-calcium alginate composite adsorbent[J]. Colloid Surfaces A, 2009, 342(1/3):76-83

    Google Scholar Pub Med

    [4] Wu Z J, Joo H, Lee K. Kinetics and thermodynamics of the organic dye adsorption on the mesoporous hybrid xerogel[J]. Chem Eng J, 2005, 112(1/3):227-236

    Google Scholar Pub Med

    [5] Wu Z J, Ahn I S, Lin Y X, et al. Methyl orange adsorption by microporous and mesoporous TiO2-SiO2, TiO2-SiO2-Al2O3 composite xerogels[J]. Compos Interface, 2004, 11(2):205-212

    Google Scholar Pub Med

    [6] Wu Z J, Xiang H, Kim T, et al. Surface properties of submicrometer silica spheres modified with aminopropyltriethoxysilane and phenyltriethoxysilane[J]. J Colloid Interf Sci, 2006, 304(1):119-124

    Google Scholar Pub Med

    [7] Liu H N, Ye X S, Li Q, et al. Boron adsorption using a new boron-selective hybrid gel and the commercial resin D564[J]. Colloid Surfaces A, 2009, 341(1/3):118-126

    Google Scholar Pub Med

    [8] Wu Z J, Wu J H, Xiang H, et al. Organosilane-functionalized Fe3O4 composite particles as effective magnetic assisted adsorbents[J]. Colloid Surfaces A, 2006, 279(1/3):167-174

    Google Scholar Pub Med

    [9] 游来江, 蒋燕, 向虹,等. 改性介孔无机凝胶的制备及其在溶液中的吸附机理[J]. 材料导报, 2006, 20-Ⅵ(S1):20-23

    Google Scholar Pub Med

    [10] Lützenkirchen J. Ionic strength effects on cation sorption to oxides: macroscopic observations and their significance in microscopic interpretation[J]. J Colloid Interf Sci, 1997, 195(1):149-155

    Google Scholar Pub Med

    [11] Ye X S, Liu T Y, Li Q, et al. Comparison of strontium and calcium adsorption onto composite magnetic particles derived from Fe3O4 and bis(trimethoxysilylpropyl)amine[J]. Colloid Surfaces A, 2008, 330(1):21-27

    Google Scholar Pub Med

    [12] Liu H N, You L J, Ye X S, et al. Adsorption kinetics of an organic dye by wet hybrid gel monoliths[J]. J Sol-Gel Sci Technol, 2008, 45(3):279-290

    Google Scholar Pub Med

    [13] Richens D T. Ligand substitution reactions at inorganic centers [J]. Chem Rev, 2005, 105(6):1961-2002

    Google Scholar Pub Med

    [14] Rahnemaie R, Hiemstra T, van Riemsdijk W H. A new surface structural approach to ion adsorption: tracing the location of electrolyte ions[J]. J Colloid Interf Sci, 2006, 293(2):312-321

    Google Scholar Pub Med

    [15] Brown G E, Henrich V E, Casey W H, et al. Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms[J]. Chem Rev, 1999, 99(1):77-174

    Google Scholar Pub Med

    [16] Davis J A, Leckie J O. Surface ionization and complexation at the oxide/water interface Ⅱ. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions[J]. J Colloid Interf Sci, 1978, 67(1):90-107

    Google Scholar Pub Med

    [17] Goldberg S. Inconsistency in the triple layer model description of ionic strength dependent boron adsorption[J]. J Colloid Interf Sci, 2005, 285(2):509-517

    Google Scholar Pub Med

    [18] Chen C L, Wang X K. Sorption of Th(IV) to silica as a function of pH, humic/fulvic acid, ionic strength[J]. Appl Radiat Isotopes, 2007, 65(2):155-163

    Google Scholar Pub Med

    [19] 林青, 徐绍辉. 土壤中重金属离子竞争吸附的研究进展[J]. 土壤, 2008, 40(5):706-711

    Google Scholar Pub Med

    [20] 杨杰文, 蒋新, 徐仁扣,等. 离子强度和SO2-4对土壤吸附Al的影响[J]. 环境化学, 2002, 21(3):230-234

    Google Scholar Pub Med

    [21]

    Google Scholar Pub Med

    [22] Filius J D, Lumsdon D G, Meeussen J C L, et al. Adsorption of fulvic acid on goethite[J]. Geochim Cosmochim Ac, 2000, 64(1):51-60

    Google Scholar Pub Med

    [23] Vilar V J P, Botelho C M S, Boaventura R A R. Influence of pH, ionic strength and temperature on lead biosorption by gelidium and agar extraction algal waste[J]. Process Biochem, 2005, 40(10):3267-3275

    Google Scholar Pub Med

    [24] Al-Degs Y S, El-Barghouthi M I, El-Sheikh A H, et al. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon[J]. Dyes Pigments, 2008, 77:16-23

    Google Scholar Pub Med

    [25] 周笑鹏, 白姝, 孙彦. 离子强度和溶质浓度对蛋白质在Q Sepharose FF中吸附动力学的影响[J]. 化工学报, 2005, 56(1):130-134

    Google Scholar Pub Med

    [26] Campinas M, Rosa M J. The ionic strength effect on microcystin and natural organic matter surrogate adsorption onto PAC[J]. J Colloid Interf Sci, 2006, 299(2):520-529

    Google Scholar Pub Med

    [27] Xu D, Zhou X, Wang X K. Adsorption and desorption of Ni2+ on Na-montmorillonite: effect of pH, ionic strength, fulvic acid, humic acid and addition sequences[J]. Appl Clay Sci, 2008, 39(3/4):133-141

    Google Scholar Pub Med

    [28] Gu X Y, Evans L J. Modelling the adsorption of Cd(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ) onto fithian illite[J]. J Colloid Interf Sci, 2007, 307(2):317 325

    Google Scholar Pub Med

    [29] Gu X Y, Evans L J. Surface complexation modelling of Cd(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Pb(Ⅱ) and Zn(Ⅱ) adsorption onto kaolinite[J]. Geochim Cosmochim Ac, 2008, 72(2):267-276

    Google Scholar Pub Med

    [30] Guo X Y, Zhang S Z, Shan X Q. Adsorption of metal ions on lignin[J]. J Hazard Mater, 2008, 151(1):134-142

    Google Scholar Pub Med

    [31] Zhao D L, Feng S J, Chen C L, et al. Adsorption of thorium(Ⅳ) on MX-80 bentonite: effect of pH, ionic strength and temperature[J]. Appl Clay Sci, 2008, 41(1/2):17-23

    Google Scholar Pub Med

    [32] Parolo M E, Savini M C, Vallés J M, et al. Tetracycline adsorption on montmorillonite: pH and ionic strength effects[J]. Appl Clay Sci, 2008, 40(1/4):179-186

    Google Scholar Pub Med

    [33] 刘峙嵘, 韦鹏, 曾凯. pH和离子强度对泥煤吸附镍的影响[J]. 煤炭学报, 2007, 32(8):854-859

    Google Scholar Pub Med

    [34] Grover P K, Ryall R L. Critical appraisal of salting-out and its implications for chemical and biological sciences[J]. Chem Rev, 2005, 105(1):1-10

    Google Scholar Pub Med

    [35] Khraisheh M, Holland C, Creany C, et al. Effect of molecular weight and concentration on the adsorption of CMC onto talc at different ionic strengths[J]. Int J Miner Process, 2005, 75(3/4):197-206

    Google Scholar Pub Med

    [36] Eren E, Afsin B. Investigation of a basic dye adsorption from aqueous solution onto raw and pre-treated bentonite surfaces[J]. Dyes Pigments, 2008, 76:220-225

    Google Scholar Pub Med

    [37] Chibowski S, Mazur E O, Patkowski J. Influence of the ionic strength on the adsorption properties of the system dispersed aluminium oxide-polyacrylic acid[J]. Mater Chem Phys, 2005, 93(2/3):262-271

    Google Scholar Pub Med

    [38] Sennerfors T, Solberg D, Tiberg F. Adsorption of polyelectrolyte-nanoparticle systems on silica: influence of ionic strength[J]. J Colloid Interf Sci, 2002, 254(2):222-226

    Google Scholar Pub Med

    [39] Chen J P, Wu S. Simultaneous adsorption of copper ions and humic acid onto an activated carbon[J]. J Colloid Interf Sci, 2004, 280(2):334-342

    Google Scholar Pub Med

    [40] Marcus Y, Hefter G. Ion pairing[J]. Chem Rev, 2006, 106(11):4585-4621

    Google Scholar Pub Med

    [41] 扬亚提, 张平. 离子强度对恒电荷土壤胶体吸附Cu2+和Pb2+的影响[J]. 环境化学, 2001, 20(6):567-571

    Google Scholar Pub Med

    [42] 邹献中, 徐建民, 赵安珍,等. 离子强度和pH对可变电荷土壤与铜离子相互作用的影响[J]. 土壤学报, 2003, 40(6):845-851

    Google Scholar Pub Med

    [43] 谢绍俊, 何湘柱, 舒绪刚,等. 纳米ZrO2在液相中分散的研究进展[J]. 材料导报, 2008, 22-Ⅻ:15-18

    Google Scholar Pub Med

    [44] Lan Q D, Bassi A S, Zhu J X, et al. A Modified langmuir model for the prediction of the effects of ionic strength on the equilibrium characteristics of protein adsorption onto ion exchange/affinity sdsorbents[J]. Chem Eng J, 2001, 81(1/3):179-186

    Google Scholar Pub Med

    [45] Greenwood R, Kendall K. Effect of ionic strength on the adsorption of cationic polyelectrolytes onto alumina studied using electroacoustic measurements[J]. Powder Technol, 2000, 113(1/2):148-157

    Google Scholar Pub Med

    [46] 李爱民, 冉炜, 代静玉. 天然有机质与矿物间的吸附及其环境效应的研究进展[J]. 岩石矿物学杂志, 2005, 24(6):671-680

    Google Scholar Pub Med

    [47] 魏世勇, 谭文峰, 刘凡. 土壤腐殖质-矿物质交互作用的机制及研究进展[J]. 中国土壤与肥料, 2009, (1):1-6

    Google Scholar Pub Med

    [48] Raghuraman H, Ganguly S, Chattopadhyay A. Effect of ionic strength on the organization and dynamics of membrane-bound melittin[J]. Biophys Chem, 2006, 124(2):115-124.

    Google Scholar Pub Med

    [49] Wu Z J, Lee K. Adsorption mechanisms of mesoporous adsorbents in solutions[J]. Chem Res Chinese U, 2004, 20(2):185-187

    Google Scholar Pub Med

    [50] Liu H N, Qing B J, Ye X S, et al. Boron adsorption by composite magnetic particles[J]. Chem Eng J, 2009, 151(1/3):235-240

    Google Scholar Pub Med

    [51] Liu H N, Qing B J, Ye X S, et al. Boron adsorption mechanism of a hybrid gel derived from tetraethoxysilane and bis(trimethoxysilylpropyl)amine[J]. Curr Appl Phys, 2009, 9(4):e280-e283

    Google Scholar Pub Med

    [52] Liu H N, Ye X S, Li W, et al. Comparison of boric acid adsorption by hybrid gels[J]. Desalination Water Treat, 2009, 2(1/3):185-194

    Google Scholar Pub Med

    [53] Wu Z J, You L J, Xiang H, et al. Comparison of dye adsorption by mesoporous hybrid gels: understanding the interactions between dyes and gel surfaces[J]. J Colloid Interf Sci, 2006, 303(2):346-352

    Google Scholar Pub Med

    [54] Wu Z J, Ahn I S, Lee C H, et al. Enhancing the organic dye adsorption on porous xerogels[J]. Colloid Surfaces A, 2004, 240(1/3):157-164

    Google Scholar Pub Med

    [55] Wu Z J, Joo H, Ahn I S, et al. Organic dye adsorption on mesoporous hybrid gels[J]. Chem Eng J, 2004, 102(3):277-282

    Google Scholar Pub Med

    [56] Lozinsky E, Novoselsky A, Glaser R, et al. Effect of ionic strength on the binding of ascorbate to albumin[J]. Biochim Biophys Acta, 2002, 1571(3):239-244

    Google Scholar Pub Med

    [57] Torres M F, González J M, Rojas M R, et al. Effect of ionic strength on the rheological behavior of aqueous cetyltrimethylammonium p-toluene sulfonate solutions[J]. J Colloid Interf Sci, 2007, 307(1):221-228

    Google Scholar Pub Med

    [58] Jones K L, O'Melia C R. Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength[J]. J Membrane Sci, 2000, 165(1):31-46

    Google Scholar Pub Med

    [59] Verm hlen K, Lewandowski H, Narres H D, et al. Adsorption of polyelectrolytes onto oxides-the influence of ionic strength, molar mass, and Ca2+ ions[J]. Colloids Surfaces A, 2000, 163(1):45-53

    Google Scholar Pub Med

    [60] 梁锐杰, 陈炳稔. 流动注射分光光度法研究离子强度对活性炭吸附阴离子染料的影响[J]. 离子交换与吸附, 2004, 20(1):54-61

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(12522) PDF downloads(4264) Cited by(0)

Access History

RESEARCH PROGRESS ON MECHANISMS ABOUT THE EFFECT OF IONIC STRENGTH ON ADSORPTION

Fund Project:

Abstract: The effect of ionic strength on the adsorption at solid/liquid interface has been discussed based on the introduction of the hydration of molecules and ions, the Stern and classical triple-layer models at metal oxide/water solution interfaces, and inner and outer sphere surface complexes. Generally speaking, with the increase in ionic strength, the electrostatic interactions between adsorbents and adsorbates decrease, and the hydrophobic interactions increase, the complexation does not have any obvious changes. Electrolytes affect adsorption by ion exchange competition with adsorbate ions, by salting-in and salting-out effects on adsorbates, by changing adsorbate molecular size, and by forming ion pairs with adsorbates, etc.

Reference (60)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint