2018 Volume 12 Issue 10
Article Contents

LIU Jie, DONG Shucen, ZHANG Wenbo, LU Wei. Bamboo activated carbon adsorption and near infrared spectroscopy prediction of heavy metal in soil[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2855-2863. doi: 10.12030/j.cjee.201806023
Citation: LIU Jie, DONG Shucen, ZHANG Wenbo, LU Wei. Bamboo activated carbon adsorption and near infrared spectroscopy prediction of heavy metal in soil[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2855-2863. doi: 10.12030/j.cjee.201806023

Bamboo activated carbon adsorption and near infrared spectroscopy prediction of heavy metal in soil

  • Accepted Date: 05/06/2018
    Available Online: 11/10/2018
    Fund Project:
  • Bamboo activated carbon (BAC) was prepared by the steam activation method and its pore structure characteristics were analyzed. In order to investigate the effect of bamboo activated carbon on soil remediation and improvement, a pot experiment was carried out. After cultivation soil heavy metal content, plant height, biomass, the heavy metal content in plant and underground adding bamboo activated carbon with different ratios (0%, 10% and 20%) were analyzed. The results showed that the pH value and organic matter of soil gradually increased, the content of heavy metal decreased obviously with an increase of the amount of bamboo activated carbon. Moreover, the removal rates of heavy metal Cu, Pb and Zn in soil were 94.8%, 82.1% and 87.7% with a high amount by adding 20% ratio of bamboo activated carbon in soil. The height and biomass of zinnia elegans were increased and the content of heavy metals in root and shoot were reduced. The effect of bamboo activated carbon was remarkable to remove copper ions for remediation and improvement of soil. Meanwhile, a prediction model for the content of copper ions in soil with different ratios of bamboo activated carbon combined with PLS (partial least square) was created by using near-infrared spectroscopy technique. The R2 was 0.995 9 and RPD was greater than 10 which indicated that the model had a good correlation and excellent accuracy for Cu2+ prediction in soil.
  • 加载中
  • [1] 郭彦海, 袁孙许, 超袁, 等. 上海某生活垃圾焚烧厂周边土壤重金属污染特征尧来源分析及潜在生态风险评价[J]. 环境科学,2017,38(12):5262-5271 10.13227/j.hjkx.201704113

    Google Scholar Pub Med

    [2] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业,2014,36(5):10-11

    Google Scholar Pub Med

    [3] LI Z Y, MA Z W, KUIJP T J V D, et al.A review of soil heavy metal pollution frommines in China: Pollution and health risk assessment[J].Science of the Total Environment,2014,468-469:843-853 10.1016/j.scitotenv.2013.08.090

    Google Scholar Pub Med

    [4] 周雅, 毕春娟, 周枭潇, 等. 上海市郊工业区附近蔬菜中重金属分布及其健康风险[J]. 环境科学,2017,38(12):5292-5298 10.13227/j.hjkx.201702104

    Google Scholar Pub Med

    [5] KOPTSIK G N.Modern approaches to remediation of heavy metal polluted soils: A review[J].Eurasian Soil Science,2014,47(7):707-722 10.1134/S1064229314070072

    Google Scholar Pub Med

    [6] DADA E O, NJUKU K L, OSUNTOKI A A, et al.A review of current techniques of in situ physic-chemical and biological remediation of heavy metals polluted soil[J].Ethiopian Journal of Environmental Studies & Management,2015,8(5):606-615 10.4314/ejesm.v8i5.13

    Google Scholar Pub Med

    [7] CHIBUIKE G U, OBIORA S C.Heavy metal polluted soils: Effect on plants and bioremediation methods[J].Applied and Environmental Soil Science,2014,2014:243-254 10.1155/2014/752708

    Google Scholar Pub Med

    [8] 许剑臣, 李晔, 肖华锋, 等. 改良剂对重金属复合污染土壤的修复效果[J]. 环境工程学报,2017,11(12):6511-6517

    Google Scholar Pub Med

    [9] HORIKAWA T, KITAKAZE Y, SEKIDA T, et al.Characteristics and humidity control capacity of activated carbon from bamboo[J].Bioresource Technology,2010,101(11):3964-3969 10.1016/j.biortech.2010.01.032

    Google Scholar Pub Med

    [10] BEN-DOR E, BANIN A.Near-infrared analysis (NIRS) as amethod to simultaneously evaluate spectral featureless constituents in soils[J].Soil Science,1995,159(4):259-270 10.1097/00010694-199504000-00005

    Google Scholar Pub Med

    [11] MATSUNAGA T.A temperature-emissivity separation method using an empirical relationship between the mean, the maximum and the minimum of the thermal infrared emissivity spectrum[J].Journal of Remote Sensing Society of Japan,1992,42:83-106 10.11440/rssj1981.14.230

    Google Scholar Pub Med

    [12] MORRA M J, HALL M H, FREEBORN L L.Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy[J].Soil Science Society of America Journal, 1991,55(1):288-291 10.2136/sssaj1991.03615995005500010051x

    Google Scholar Pub Med

    [13] MARIA K, RENE G, CECILIE H, et al.Comparing predictive ability of laser-induced breakdown spectroscopy to visible near-infrared spectroscopy for soil property determination[J].Biosystems Engineering,2017,156:157-172 10.1016/j.biosystemseng.2017.01.007

    Google Scholar Pub Med

    [14] GAYDON V, COLINET G, BOCK L, et al.Method for near infrared sensor-based sorting of a copper ore[J].Journal of Near Infrared Spectroscopy,2009,17(5):177-194 10.1255/jnirs.849

    Google Scholar Pub Med

    [15] 刘运坤. 炭改良剂对复合污染土壤Cu的钝化效果[D]. 南昌:南昌航空大学,2016

    Google Scholar Pub Med

    [16] XU P, SUN C X, YE X Z, et al.The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil[J].Ecotoxicology and Environmental Safety,2016,132:94-100 10.1016/j.ecoenv.2016.05.031

    Google Scholar Pub Med

    [17] KIM H S, KIM K R, KIM H J, et al.Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil[J].Environmental Earth Sciences,2015,74(2):1249-1259 10.1007/s12665-015-4116-1

    Google Scholar Pub Med

    [18] ZHANG Y J, XING Z J, DUAN Z K, et al.Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste[J].Applied Surface Science,2014,315(4):279-286 10.1016/j.apsusc.2014.07.126

    Google Scholar Pub Med

    [19] AYUKE F O, BRUSSAARDA L, VANLAUWEB B, et al.Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation[J].Applied Soil Ecology,2011,48(1):53-62 10.1016/j.apsoil.2011.02.001

    Google Scholar Pub Med

    [20] 李子龙, 马双枫, 王栋, 等. 活性炭吸附水中金属离子和有机物吸附模式和机理的研究[J]. 环境科学与管理,2009,34(10):88-92

    Google Scholar Pub Med

    [21] 赵秀云, 文贞, 张桢超, 等. 生物质活性炭在污染土壤修复中的应用及稳定性研究进展[J]. 绿色科技,2017(14):88-90

    Google Scholar Pub Med

    [22] KARER J, WAWRA A, ZEHETNER F.Effects of biochars and compost mixtures and inorganic additives on immobilisation of heavy metals in contaminated soils[J].Water,Air & Soil Pollution,2015,226(10):342-353 10.1007/s11270-015-2584-2

    Google Scholar Pub Med

    [23] 徐龙君, 刘科, 张福凯. 磁性活性炭处理含铜废水[J]. 环境工程学报,2012,6(9):3121-3124

    Google Scholar Pub Med

    [24] 张蕊, 葛滢. 稻壳基活性炭制备及其对重金属吸附研究[J]. 环境污染与防治,2011,33(1):41-45

    Google Scholar Pub Med

    [25] UZUN I, GUZEL F.Adsorption of some heavy metal ions from aqueous solution by activated carbon and comparison of percent adsorption results of activated carbon with those of some other adsorbents[J].Turkish Journal of Chemistry,2014,24(3):291-297

    Google Scholar Pub Med

    [26] BOHLI T, OUEDERNI A, FIOL N, et al.Single and binary adsorption of some heavy metal ions from aqueous solutions by activated carbon derived from olive stones[J].Desalination & Water Treatment,2015,53(4):1082-1088 10.1080/19443994.2013.859099

    Google Scholar Pub Med

    [27] HMID A, CHAMI Z A, SILLEN W, et al.Olive mill waste biochar: A promising soil amendment for metal immobilization in contaminated soils[J].Environmental Science & Pollution Research International,2015,22(2):1444-1451 10.1007/s11356-014-3467-6

    Google Scholar Pub Med

    [28] JIA W L, WANG B L, WANG C P, et al.Tourmaline and biochar for the remediation of acid soil polluted with heavy metals[J].Journal of Environmental Chemical Engineering,2017,5(3):2107-2114 10.1016/j.jece.2017.04.015

    Google Scholar Pub Med

    [29] TAIWO A F, CHINYERE N J.Sorption characteristics for multiple adsorption of heavy metal ionsusing activated carbon from Nigerian bamboo[J].Journal of Materials Science and Chemical Engineering,2016,4(4):39-48 10.4236/msce.2016.44005

    Google Scholar Pub Med

    [30] LV D, LIU Y, ZHOU J S, et al.Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb(II) and Cu(II) removal from aqueous solutions[J].Applied Surface Science,2018,428:648-658 10.1016/j.apsusc.2017.09.151

    Google Scholar Pub Med

    [31] TODOROVA M, MOUAZEN A, LANGE H, et al.Potential of near-infrared spectroscopy for measurement of heavy metals in soil as affected by calibration set size[J].Water,Air & Soil Pollution,2014,225(8):2036-2055 10.1007/s11270-014-2036-4

    Google Scholar Pub Med

    [32] SIEBIELEC G, MCCARTY G W, STUCZYNSKI T I, et al.Near-and mid-infrared diffuse reflectance spectroscopy for measuring soil metal content[J].Journal of Environmental Quality,2004,33(6):2056-2069

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(3251) PDF downloads(183) Cited by(0)

Access History

Bamboo activated carbon adsorption and near infrared spectroscopy prediction of heavy metal in soil

Fund Project:

Abstract: Bamboo activated carbon (BAC) was prepared by the steam activation method and its pore structure characteristics were analyzed. In order to investigate the effect of bamboo activated carbon on soil remediation and improvement, a pot experiment was carried out. After cultivation soil heavy metal content, plant height, biomass, the heavy metal content in plant and underground adding bamboo activated carbon with different ratios (0%, 10% and 20%) were analyzed. The results showed that the pH value and organic matter of soil gradually increased, the content of heavy metal decreased obviously with an increase of the amount of bamboo activated carbon. Moreover, the removal rates of heavy metal Cu, Pb and Zn in soil were 94.8%, 82.1% and 87.7% with a high amount by adding 20% ratio of bamboo activated carbon in soil. The height and biomass of zinnia elegans were increased and the content of heavy metals in root and shoot were reduced. The effect of bamboo activated carbon was remarkable to remove copper ions for remediation and improvement of soil. Meanwhile, a prediction model for the content of copper ions in soil with different ratios of bamboo activated carbon combined with PLS (partial least square) was created by using near-infrared spectroscopy technique. The R2 was 0.995 9 and RPD was greater than 10 which indicated that the model had a good correlation and excellent accuracy for Cu2+ prediction in soil.

Reference (32)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint